结合批归一化的多层感知机糖尿病预测诊断模型
作者:
基金项目:

福建省自然科学基金(2019J01856);赛尔网络下一代互联网创新项目(NGII20160708)


Multi-Layer Perceptron Diabetes Prediction Model Combined with Batch Normalization
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    糖尿病的早期发现,对成功控制、预防并发症,降低患病率具有重要意义.现有基于机器学习建立的糖尿病诊断模型,由于泛化能力不足而导致精度较低.为此,本文提出结合批归一化的多层感知机模型,保证模型中数据分布的一致性.基于PIMA数据集进行训练评估,实验结果表明该模型用于糖尿病早期识别泛化能力好、收敛速度快且有较高的准确率.

    Abstract:

    The early detection of diabetes is of great significance for successful control of diabetes, prevention of complications, and reduction of prevalence. Existing diabetes diagnosis models based on machine learning have weak precision due to insufficient generalization ability. Therefore, this study proposes a multi-layer perceptron model combined with batch normalization to ensure the consistency of data distribution in the model. The proposed model is based on the PIMA training set for training evaluation. The experimental results show that the model has sound generalization ability in early recognition of diabetes, fast convergence, and high accuracy.

    参考文献
    [1] 国际糖尿病联盟. 全球糖尿病概览. 8版. 2017. 43.
    [2] Sisodia D, Sisodia DS. Prediction of diabetes using classification algorithms. Procedia Computer Science, 2018, 132:1578-1585.[doi:10.1016/j.procs.2018.05.122
    [3] 刘阳, 孙华东, 张艳荣, 等. 基于支持向量机的糖尿病预测模型研究. 哈尔滨商业大学学报(自然科学版), 2018, 34(1):61-65, 74
    [4] 胡建强. 一种基于云雾辅助的移动健康监护系统设计. 厦门大学学报(自然科学版), 2019, 58(4):608-613
    [5] Choubey DK, Paul S, Kumar S, et al. Classification of pima Indian diabetes dataset using naive Bayes with genetic algorithm as an attribute selection. Proceedings of International Conference on Communication and Computing Systems. Nanjing, China. 2017. 451-455.
    [6] Mohapatra SK, Swain JK, Mohanty MN. Detection of diabetes using multilayer perceptron. In Bhaskar MA, Dash SS, Das S, et al, eds. International Conference on Intelligent Computing and Applications. Singapore:Springer. 2019. 109-116.
    [7] Soltani Z, Jafarian A. A new artificial neural networks approach for diagnosing diabetes disease type II. International Journal of Advanced Computer Science and Applications, 2016, 7(6):89-94
    [8] Ashiquzzaman A, Tushar AK, Islam MR, et al. Reduction of overfitting in diabetes prediction using deep learning neural network. In:Kim KJ, Kim H, Baek N, eds. IT Convergence and Security 2017. Singapore:Springer, 2018. 35-43.
    [9] Ioffe S, Szegedy C. Batch normalization:Accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille, France. 2015. 448-456.
    [10] 朱威, 屈景怡, 吴仁彪. 结合批归一化的直通卷积神经网络图像分类算法. 计算机辅助设计与图形学学报, 2017, 29(9):1650-1657.[doi:10.3969/j.issn.1003-9775.2017.09.008
    [11] 张德园, 杨柳, 李照奎, 等. BN-cluster:基于批归一化的集成算法实例分析. 沈阳航空航天大学学报, 2018, 35(3):72-80.[doi:10.3969/j.issn.2095-1248.2018.03.010
    [12] Galea A, Capelo L. Applied Deep Learning with Python:Use Scikit-learn, TensorFlow, and Keras to Create Intelligent Systems and Machine Learning Solutions. Packt Publishing, 2018.
    [13] Hackeling G. Mastering Machine Learning with Scikit-learn. 2nd ed. Packt Publishing, 2017.
    [14] UCI. UCI Machine Learning. https://www.kaggle.com/uciml/pima-indians-diabetes-database. 2016.
    [15] Wickham H, Stryjewski L. 40 years of boxplots. The American Statistician, 2011.
    [16] 孙艳丰, 杨新东, 胡永利, 等. 基于Softplus激活函数和改进Fisher判别的ELM算法. 北京工业大学学报, 2015, 41(9):1341-1348
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡清礼,胡建强,余小燕.结合批归一化的多层感知机糖尿病预测诊断模型.计算机系统应用,2020,29(5):182-188

复制
分享
文章指标
  • 点击次数:2054
  • 下载次数: 2421
  • HTML阅读次数: 2034
  • 引用次数: 0
历史
  • 收稿日期:2019-09-20
  • 最后修改日期:2019-10-15
  • 在线发布日期: 2020-05-07
  • 出版日期: 2020-05-15
文章二维码
您是第12829256位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号