基于PCA优化的PSO-FCM聚类算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61402220,61502221);湖南省哲学社会科学基金(16YBA323);湖南省自然科学基金(2015JJ3015);湖南省教育厅青年项目(15B207,18B279);南华大学科研创新项目(193YXC015)


Optimized PSO-FCM Cluster Algorithm Based on Principal Component Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决PSO-FCM聚类算法针对多聚类问题,性能不足,容易陷入局部最优解,影响多聚类结果的准确度.提出一种基于PCA优化的PSO-FCM聚类算法,通过引入PCA分析方法,在粒子的各维度上设定不同的移动权重,降低粒子的敏感度,合理的控制粒子各维度上移动的速度,有效的降低粒子各维度上粒子无约束,位于多个聚类群交界处的粒子过分敏感,移动到错误的聚类的可能性增加.本文简要介绍了PSO-FCM算法的相关情况,详细介绍了本文的优化算法,最后通过实验证明,本文提出的优化算法在多个数据集上结果总体优于其他算法.

    Abstract:

    For multi-cluster problems, PSO-FCM cluster algorithm is lack of performance and easily leads to local optimum, which affects the accuracy of multi-cluster result. To tackle these issues, an optimized PSO-FCM cluster algorithm based on PCA is put forward. By introducing PCA processing method, setting different movement weight on each dimension of particle and reducing particle sensitivity, reasonably controlling movement speed of particles on each dimension and effectively decreasing unconstrained particles on each dimension, possibility of moving into false cluster is increased due to over-sensitive particles on interface of multi-cluster groups. This paper introduces related conditions of PSO-FCM algorithm briefly and the proposed optimized algorithm in detail. Finally, this paper presents the experiment results, i.e., the optimized algorithm proposed in this study is totally better than other algorithms in many data sets.

    参考文献
    相似文献
    引证文献
引用本文

陈诚,刘振宇.基于PCA优化的PSO-FCM聚类算法.计算机系统应用,2020,29(3):213-217

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-07-29
  • 最后修改日期:2019-09-05
  • 录用日期:
  • 在线发布日期: 2020-03-02
  • 出版日期: 2020-03-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号