基于Hessian矩阵范数正则化方法的共聚焦图像复原
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51675329,51675342,51775332,51975360);科技部创新方法工作专项(2018IM020100);国家社科基金重大项目(17ZDA020);上海交通大学“医工交叉研究基金”(IH2018QNB03,YG2017QN61);上海市首台突破项目(7Z119010004)


Confocal Image Restoration Based on Hessian Matrix Norm Regularization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对于泊松噪声污染下的模糊共聚焦图像复原问题,为解决传统方法中存在的阶梯效应,提出了一种基于Hessian矩阵范数的正则化方法.在泊松概率模型的基础上,该方法引入Hessian矩阵范数作为正则条件,并应用交替方向乘子法和梯度投影方法求解最优化模型.在激光扫描共聚焦显微镜实验中,所获得的复原图像质量优于传统方法,此结果证明了该方法可以有效地复原泊松噪声污染下的模糊共聚焦图像.

    Abstract:

    For the problem of deblurred confocal image restoration under Poisson noise, a regularization method based on Hessian matrix norm was proposed to solve the stairs effect existing in traditional methods. Based on the Poisson probability model, the method introduced the Hessian matrix norm as a regular condition, and applied the alternating direction multiplier method and gradient projection method to solve the optimization model. The quality of the reconstructed image obtained in the confocal laser scanning microscopy experiment was better than that of the traditional method. This result proves that the method can effectively restore the deblurred confocal image under Poisson noise.

    参考文献
    相似文献
    引证文献
引用本文

陈集懿,何涛,胡洁.基于Hessian矩阵范数正则化方法的共聚焦图像复原.计算机系统应用,2020,29(2):228-232

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-06-11
  • 最后修改日期:2019-07-05
  • 录用日期:
  • 在线发布日期: 2020-01-16
  • 出版日期: 2020-02-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号