基于融合元路径权重的异质网络表征学习
作者:

Heterogeneous Network Representation Learning Based on Fusion Meta-Path Weights
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对基于单条元路径的异质网络表征缺失异质信息网络中结构信息及其它元路径语义信息的问题,本文提出了基于融合元路径权重的异质网络表征学习方法.该方法对异质信息网络中元路径集合进行权重学习,进而对基于不同元路径的低维表征进行加权融合,得到融合不同元路径语义信息的异质网络表征.实验结果表明,基于融合元路径权重的异质网络表征学习具有良好的表征学习能力,可有效应用于数据挖掘.

    Abstract:

    To solve the problem of missing structural information and other meta-path semantic information in heterogeneous network representation based on single meta-path, this study proposes a representation learning method of heterogeneous network based on fusion meta-path weight. This method learns from the set of meta-paths in heterogeneous information networks, and then the low-dimensional representations of different meta-paths are fused with appropriate weights. The representation of heterogeneous networks with semantic information of different meta-paths are obtained. Experiments show that the heterogeneous network representation learning based on fusion meta-path weights has sound representation learning ability and can be effectively applied to data mining.

    参考文献
    [1] Cai HY, Zheng VW, Chang KCC. A comprehensive survey of graph embedding:Problems, techniques, and applications. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9):1616-1637.[doi:10.1109/TKDE.2018.2807452
    [2] 蒋宗礼, 张津丽, 杜永萍, 等. 基于堆叠降噪自编码器的异质网络的层次构建与节点分类. 北京工业大学学报, 2018, 44(9):1217-1226.[doi:10.11936/bjutxb2017040032
    [3] Perozzi B, Al-Rfou R, Skiena S. DeepWalk:Online learning of social representations. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA. 2014. 701-710.
    [4] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.
    [5] Grover A, Leskovec J. Node2Vec:Scalable feature learning for networks. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA. 2016. 855-864.
    [6] Tang J, Qu M, Wang MZ, et al. LINE:Large-scale information network embedding. Proceedings of the 24th International Conference on World Wide Web. Florence, Italy. 2015. 1067-1077.
    [7] Yang C, Liu ZY, Zhao DL, et al. Network representation learning with rich text information. Proceedings of the 24th International Conference on Artificial Intelligence. Buenos Aires, Argentina. 2015. 2111-2117.
    [8] Cao SS, Lu W, Xu QK. GraRep:Learning graph representations with global structural information. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne, Australia. 2015. 891-900.
    [9] Tu CC, Zhang WC, Liu ZY, et al. Max-margin deepwalk:Discriminative learning of network representation. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York, NY, USA. 2016. 3889-3895.
    [10] Shi C, Li YT, Zhang JW, et al. A survey of heterogeneous information network analysis. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(1):17-37.[doi:10.1109/TKDE.2016.2598561
    [11] 石川, 孙怡舟. 异质网络表征学习的研究进展. 中国计算机学会通讯, 2018, 14(3):16-21
    [12] Sun YZ, Han JW, Yan XF, et al. PathSim:Meta path-based top-K similarity search in heterogeneous information networks. Proceedings of the VLDB Endowment, 2011, 4(11):992-1003
    [13] Sun YZ, Han JW. Mining heterogeneous information networks:Principles and methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery, 2012, 3(2):1-159.[doi:10.2200/S00433ED1V01Y201207DMK005
    [14] Zhang JL, Jiang ZL, Li T. CHIN:Classification with META-PATH in heterogeneous information networks. Proceedings of the 1st International Conference on Applied Informatics. Bogotá, Colombia. 2018. 63-74.
    [15] Dong YX, Chawla NV, Swami A. Metapath2Vec:Scalable representation learning for heterogeneous networks. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, NS, Canada. 2017. 135-144.
    [16] 石川, 孙怡舟, 菲利普·俞. 异质信息网络的研究现状和未来发展. 中国计算机学会通讯, 2017, 13(11):35-40
    [17] Fu TY, Lee WC, Lei Z. Hin2vec:Explore meta-paths in heterogeneous information networks for representation learning. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore. 2017. 1797-1806.
    [18] Gupta M, Kumar P, Bhasker B. HeteClass:A meta-path based framework for transductive classification of objects in heterogeneous information networks. Expert Systems with Applications, 2017, 68:106-122.[doi:10.1016/j.eswa.2016.10.013
    [19] Gupta M, Kumar P, Bhasker B. A new relevance measure for heterogeneous networks. Proceedings of the 17th International Conference on Big Data Analytics and Knowledge Discovery. Valencia, Spain. 2015. 165-177.
    [20] Rong X. Word2Vec parameter learning explained. arXiv preprint arXiv:1411.2738, 2014.
    [21] Tang J, Zhang J, Yao LM, et al. ArnetMiner:Extraction and mining of academic social networks. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, NV, USA. 2008. 990-998.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蒋宗礼,陈浩强,张津丽.基于融合元路径权重的异质网络表征学习.计算机系统应用,2019,28(12):28-36

复制
分享
文章指标
  • 点击次数:1577
  • 下载次数: 3400
  • HTML阅读次数: 2022
  • 引用次数: 0
历史
  • 收稿日期:2019-05-28
  • 最后修改日期:2019-06-21
  • 在线发布日期: 2019-12-13
  • 出版日期: 2019-12-15
文章二维码
您是第11121652位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号