基于双流卷积神经网络的人体行为识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61472196,61672305)


Human Action Recognition Algorithm Based on Two-Stream Convolutional Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    时序行为检测是指在一段未分割的长视频中,检测出其中包含的若干行为片段的起止时间和类别.针对该项任务,提出基于双流卷积神经网络的行为检测模型.首先使用双流卷积神经网络提取视频的特征序列,然后使用TAG (Temporal Actionness Grouping)生成行为提议,为了构建高质量的行为提议,将行为提议送入边界回归网络中修正边界,使之更为贴近真实数据,再将行为提议扩展为含有上下文信息的三段式特征设计,最后使用多层感知机对行为进行识别.实验结果表明,本算法在THUMOS 2014数据集和ActivityNet v1.3数据集获得较好的识别率.

    Abstract:

    Given a long, untrimmed video consisting of multiple action instances and complex background contents, temporal action detection needs not only to recognize their action categories, but also to localize the start time and end time of each instance. To this end, a temporal action detection network based on two-stream convolutional networks is proposed. First, the two-stream convolutional networks is used to extract the feature sequence of the video, and then TAG (Temporal Actionness Grouping) is used to generate the proposal. In order to construct high-quality proposals, the proposal is feed to the boundary regression network to correct the boundary and make it closer to the ground truth, then extend the proposal to a three-segment feature design with context information, and finally use a multi-layer perception to identify behavior. The experimental results show that the proposed algorithm achieves a great mAP in the THUMOS 2014 dataset and the ActivityNet v1.3 dataset.

    参考文献
    相似文献
    引证文献
引用本文

刘云,张堃,王传旭.基于双流卷积神经网络的人体行为识别方法.计算机系统应用,2019,28(7):234-239

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-01-21
  • 最后修改日期:2019-02-21
  • 录用日期:
  • 在线发布日期: 2019-07-05
  • 出版日期: 2019-07-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号