教育测评知识图谱的构建及其表示学习
作者:
基金项目:

国家重点研发计划(2016YFB1000902);南京普雷软件工程开发有限公司


Construction and Representation Learning of EAKG
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    知识图谱旨在描述现实世界中存在的实体以及实体之间的关系.自2012年谷歌提出“Google Knowledge Graph”以来,知识图谱在学术界和工业界受到广泛关注.针对教育领域中信息缺乏系统性组织的不足,本文构建了面向高中的教育测评知识图谱(Educational Assessment Knowledge Graph,EAKG),其中EAKG的构建包括基于本体技术的知识图谱模式层构建和依托于模式层结构的知识图谱数据层构建.与传统通过网页爬虫等技术手段构建的知识图谱相比,本文构建的知识图谱优点在于逻辑结构清晰,实体间关系的刻画遵循知识图谱模式层的定义.EAKG为领域内知识共享,知识推理,知识表示学习等任务提供了良好的支撑.在真实模考数据上的实验结果表明:在试卷得分预测,知识点得分预测的实体链接预测和三元组分类嵌入式表示学习任务上,引入领域本体作为模式层构建的EAKG的性能优于没有领域本体模式层单纯由数据事实构成的EAKG,实验表明,领域本体的引入对知识图谱的表示学习具有一定的指导意义.

    Abstract:

    The Knowledge Graph is intended to describe the entities that exist in the real world and the relationships between entities. Since Google introduced the "Google Knowledge Graph" in 2012, knowledge graph have received widespread attention in academia and industry. Aiming at the lack of systematic organization in the field of education, the Educational Assessment Knowledge Graph (EAKG) for high schools is constructed. The construction of EAKG includes knowledge graph schema layer construction based on ontology technology and knowledge graph data layer construction based on schema layer structure. Compared with the traditional knowledge graph constructed by web crawling and other technical means, the knowledge graph constructed in this study has the advantages of clear logical structure and the description of the relationship between entities follows the definition of knowledge graph schema layer. EAKG provides good support for knowledge sharing, knowledge reasoning, knowledge representation learning and other tasks in the field. The experimental results on real simulated test data show that the EAKG constructed by introducing domain ontology as schema layer has better performance than EAKG constructed by data facts alone without domain ontology schema layer on the embedded representation learning tasks such as entity link prediction of test paper score prediction, knowledge point score prediction and triplet classification. Experiments show that the introduction of domain ontology has a certain guiding significance for knowledge graph representation learning.

    参考文献
    [1] 黄光扬. 教育测量与评价. 2版. 上海:华东师范大学出版社, 2012.
    [2] 林汇波. 考试与评价的学习性分析及问题对策. 教学与管理, 2017, (22):74-76
    [3] 全通教学质量监测平台. http://yj.hysbz.com:5005/index.aspx, 2007.
    [4] 教研测. http://www.jiaoxuece.com/, 2016.
    [5] 蔡建东, 马婧. Web2.0教育应用领域知识图谱研究. 远程教育杂志, 2012, 30(2):57-62.[doi:10.3969/j.issn.1672-0008.2012.02.007
    [6] 赵露, 王林. 利用可视化应用软件进行的中学物理实验教学前沿分析. 教学与管理, 2016, (24):25-27
    [7] 汪嘉慧, 王长江. 近10年中学物理规律教学疑难问题调查研究——基于知识图谱. 湖南中学物理, 2018, 33(9):7-11, 35
    [8] Gruber TR. A translation approach to portable ontology specifications. Knowledge Acquisition, 1993, 5(2):199-220.[doi:10.1006/knac.1993.1008
    [9] Arp R, Smith B, Spear AD. What is an ontology? Arp R, Smith B, Spear AD. Building Ontologies with Basic Formal Ontology. Cambridge:MIT Press, 2015. 248.
    [10] 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述. 计算机研究与发展, 2016, 53(3):582-600
    [11] Xie LX, Wang HX. Learning knowledge bases for text and multimedia. Proceedings of the 22nd ACM international conference on Multimedia. Orlando, FL, USA. 2014. 1235-1236.
    [12] Sun K, Liu YH, Guo ZC, et al. EduVis:Visualization for education knowledge graph based on web data. Proceedings of the 9th International Symposium on Visual Information Communication and Interaction. Dallas, TX, USA. 2016. 138-139.
    [13] London A, Pelyhe Á, Holló C, et al. Applying graph-based data mining concepts to the educational sphere. Proceedings of the 16th International Conference on Computer Systems and Technologies. Dublin, Ireland. 2015. 358-365.
    [14] London A, Németh T. Student evaluation by graph based data mining of administrational systems of education. Proceedings of the 15th International Conference on Computer Systems and Technologies. Ruse, Bulgaria. 2014. 363-369.
    [15] Rodríguez-Conde MJ, Olmos-Migueláñez S, Nieto-Isidro S. Evaluation in education and guidance:A perspective from 2016. Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality. Salamanca, Spain. 2016. 135-138.
    [16] 蒋彦. 基于本体的数学知识库的构建及其应用[硕士学位论文]. 成都:电子科技大学, 2011.
    [17] 栗斌. 面向地理事件的地理本体构建研究[博士学位论文]. 武汉:武汉大学, 2014.
    [18] Xu BF, Luo XG, Peng CL, et al. Based on ontology:Construction and application of medical knowledge base. Proceedings of 2007 IEEE/ICME International Conference on Complex Medical Engineering. Beijing, China. 2007. 1586-1589.
    [19] 杨玉基, 许斌, 胡家威, 等. 一种准确而高效的领域知识图谱构建方法. 软件学报, 2018, 29(10):2931-2947
    [20] Horridge M, Knublauch H, Rector A, et al. A practical guide to building OWL ontologies using the protégé-OWL plugin and CO-ODE tools edition 1.0. Manchester:The University of Manchester, 2004.
    [21] Noy N, Rector A. Defining N-ary relations on the semantic web. https://www.w3.org/TR/2006/NOTE-swbp-n-aryRelations-20060412/,[2006-04-12].
    [22] Bordes A, Usunier N, Weston J, et al. Translating embeddings for modeling multi-relational data. Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, NV, USA. 2013. 2787-2795.
    [23] Wang Z, Zhang JW, Feng JL, et al. Knowledge graph embedding by translating on hyperplanes. Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. Quebec City, Canada. 2014. 1112-1119.
    [24] Guo S, Wang Q, Wang B, et al. SSE:Semantically Smooth Embedding for Knowledge Graphs. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(4):884-897.[doi:10.1109/TKDE.2016.2638425
    [25] Xiao H, Huang ML, Zhu XY. TransG:A generative model for knowledge graph embedding. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin, Germany. 2016. 2316-2325.
    [26] Socher R, Chen DQ, Manning CD, et al. Reasoning with neural tensor networks for knowledge base completion. Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, NV, USA. 2013. 926-934.
    [27] Trouillon T, Welbl J, Riedel S, et al. Complex embeddings for simple link prediction. Proceedings of the 33rd International Conference on Machine Learning. New York, NY, USA. 2016. 2071-2080.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗明.教育测评知识图谱的构建及其表示学习.计算机系统应用,2019,28(7):26-34

复制
分享
文章指标
  • 点击次数:2515
  • 下载次数: 5519
  • HTML阅读次数: 4791
  • 引用次数: 0
历史
  • 收稿日期:2019-01-12
  • 最后修改日期:2019-02-03
  • 在线发布日期: 2019-07-05
  • 出版日期: 2019-07-15
文章二维码
您是第11125656位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号