从手机短信到3D动画人物表情的自动生成
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Automatic Generation of 3D Facial Animation from SMS
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    手机3D动画自动生成系统旨在通过输入一条手机短信得到与其相符的动画并发送给接收方.动画中表情对于表达情绪主题以及强化动画效果等具有重要意义.本文重点研究手机3D动画中人物表情的自动生成.主要包括定性规划和定量计算两大部分.定性规划部分主要利用语义网技术,基于面部编码系统和情感轮模型构建表情本体库并建立相应公理,然后根据短信的关键信息进行知识推理,得到关于表情的定性描述.在定量部分将定性描述信息转化为具体动画数据并处理表情平滑过渡等问题.在实验的270条数据中除人为操作引起的异常外,表情规划成功率为71.2%,其中多样性表情生成率为86.89%.实验表明该方法能够较好地生成表情动画.

    Abstract:

    The 3D animation automatic generation system of mobile phone aims to obtain an animation which matches an input text message and send it to the recipient. Expressions in animation are important for expressing emotional themes and enhancing animation effects. This study focuses on the automatic generation of the character expression in the 3D animation system, mainly including the qualitative planning and the quantitative calculation. The qualitative planning part mainly uses the semantic Web technology to build an expression ontology library based on the facial coding system and the emotional wheel model and establish the appropriate axioms. Then knowledge reasoning is carried out according to the key information of short message to get the qualitative description of expressions. Followed is converting the qualitative description information into specific animation data and processing the expression smooth transition in the quantitative part, and finally a rich and diverse character expression animation is generated. Except for the abnormalities caused by human operation in the 270 data of the experiment, the success rate of expression planning is 71.2%, and the diversity expression generation rate is 83.76%. Experiments show that this proposed method can generate expression animations better.

    参考文献
    相似文献
    引证文献
引用本文

赵檬檬.从手机短信到3D动画人物表情的自动生成.计算机系统应用,2019,28(6):13-21

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-12
  • 最后修改日期:2018-12-11
  • 录用日期:
  • 在线发布日期: 2019-05-28
  • 出版日期: 2019-06-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号