基于轻量化卷积神经网络的服装分类方法
作者:

Clothing Classification Method Based on Lightweight Convolutional Neural Network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    考虑到电商平台的日益发展,使用人工分类的方式对服装进行分类无法满足目前的需求.本文从实际的应用场景出发,针对于服装图像进行分类时会受到背景因素干扰、服装图像关键部位信息以及算法模型运行的的硬件要求三个方面,分别进行改进设计.提出:1)消除背景的干扰;2)图像局部信息的利用;3)模型的轻量化处理.最终得到了在满足准确性的前提下,可以在普通低配置PC端进行运行的算法模型,提升了工作效率,同时节省了成本.

    Abstract:

    Considering the growing development of e-commerce platforms, the use of artificial classification of clothing classification cannot meet the current needs. In this study, based on the actual application scenarios, the design is improved in three aspects:the interference of background factors, the key position information of the garment image, and the hardware requirements of the algorithm model operation when classifying the garment image. Accordingly, it is proposed that to remove background interference, to use of local information of images, and to lightweight processing of the model. Finally, on the premise of satisfying the accuracy, the algorithm model that can be operated in the ordinary low-configuration PC terminal is obtained, which improves the work efficiency and saves the cost.

    参考文献
    [1] Iivarinen J, Peura M, Särelä J, et al. Comparison of combined shape descriptors for irregular objects. Proceedings of the 8th British Machine Vision Conference. Essex, Great Britain. 1997. 430-439.
    [2] Rangayyan RM, El-Faramawy NM, Desautels JEL, et al. Measures of acutance and shape for classification of breast tumors. IEEE Transactions on Medical Imaging, 1997, 16(6):799-810.[doi:10.1109/42.650876
    [3] Teh CH, Chin RT. On image analysis by the methods of moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(4):496-513.[doi:10.1109/34.3913
    [4] Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996, 29(1):51-59.[doi:10.1016/0031-3203(95)00067-4
    [5] Daugman JG. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(7):1169-1179.[doi:10.1109/29.1644
    [6] Girshick R. Fast R-CNN. arXiv:1504.08083, 2015.
    [7] Lowe DG. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2):91-110.[doi:10.1023/B:VISI.0000029664.99615.94
    [8] Dalal N, Triggs B. Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA. 2005. 886-893.
    [9] Bossard L, Dantone M, Leistner C, et al. Apparel classification with style. Asian Conference on Computer Vision. Daejeon, South Korea. 2012. 321-335.
    [10] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 770-778.
    [11] Tompson JJ, Jain A, LeCun Y, et al. Joint training of a convolutional network and a graphical model for human pose estimation. Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada. 2014. 1799-1807.
    [12] Wei SE, Ramakrishna V, Kanade T, et al. Convolutional pose machines. 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 4724-4732.
    [13] Huang G, Liu Z, Laurens VDM, et al. Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. 2017. 2261-2269.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗梦研,刘雁飞.基于轻量化卷积神经网络的服装分类方法.计算机系统应用,2019,28(3):223-228

复制
分享
文章指标
  • 点击次数:2048
  • 下载次数: 2385
  • HTML阅读次数: 1829
  • 引用次数: 0
历史
  • 收稿日期:2018-09-22
  • 最后修改日期:2018-10-19
  • 在线发布日期: 2019-02-22
文章二维码
您是第12796495位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号