改进AHP-GA算法的多目标配送路径优化
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省自然科学基金(20170520398);辽宁省教育厅科学研究一般项目(L2015041,L2012492)


Multi-Objective Location Routing Optimization of Improved AHP-GA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为准确优化快递配送路径,建立了基于时间窗的快递配送路径优化的数学模型.提出改进AHP-GA算法对多目标配送车辆路径进行优化,利用中位数层次分析算法对多个子目标进行权重系数配比,避免了极端值的影响,从而将多目标优化问题转化为单目标优化问题.通过简单的自然数对车辆路径进行编码,避免了路径重复.考虑了客户对车辆到达时间窗要求,包括车辆在约定时间之前到达获得的机会成本、在约定时间之后到达的罚金成本.最后,本文以1个配送中心,20个服务客户为例,对构建的数学模型通过分别使用传统的GA算法和使用改进AHP-GA算法进行优化,仿真结果表明,利用改进AHP-GA算法进行多目标配送路径优化,可以更加高效地求得问题的最优解.

    Abstract:

    In order to optimize the delivery path of express delivery, a mathematical model based on time window is given. In this study, improved AHP-GA algorithm is used to optimize multi-target vehicle routing, and median Analytic Hierarchy Process (AHP) is used to compare the weight coefficients of multiple sub-targets, and it is not susceptible to extremes. Thus, the multi-objective optimization problem is transformed into a single objective optimization problem. The simple natural numbers are used to code the vehicle path to avoid duplication of the paths. The customer's requirement for arrival time window, including the opportunity cost of the vehicle to arrive before the agreed time, and the cost of the fine after the agreed time. Finally, this study takes 1 distribution center and 20 service customers for example, the mathematical model constructed in this study is optimized by using traditional GA algorithm and using improved AHP-GA algorithm respectively. The simulation results show that the optimal solution can be obtained efficiently by using improved AHP-GA algorithm in multi-objective distribution path optimization problem.

    参考文献
    相似文献
    引证文献
引用本文

李凤坤.改进AHP-GA算法的多目标配送路径优化.计算机系统应用,2019,28(2):152-157

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-07-31
  • 最后修改日期:2018-08-30
  • 录用日期:
  • 在线发布日期: 2019-01-28
  • 出版日期: 2019-02-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号