基于天牛须搜索的粒子群优化算法求解投资组合问题
作者:
基金项目:

国家自然科学基金面上项目(71671037)


Particle Swarm Optimization Algorithm Based on Beetle Antennae Search for Solving Portfolio Problem
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    粒子群算法(PSO)作为一种群智能算法,有效提高了投资组合模型的实用性,但存在搜索精度较低和易陷入局部最优的缺陷.为克服其缺点,本文提出基于天牛须搜索(BAS)的粒子群优化算法(简称BSO),并将其应用到包含完整费用的投资组合模型中.在基于天牛须搜索的优化算法中(BSO),每个粒子的更新规则源自BAS,在每次迭代中都有自己对环境空间的判断,而不仅依赖于PSO中历史最佳解决方案和粒子个体的当前全局最优解,从而减少迭代次数、提高搜索速度和精度.实证结果表明算法更具稳定性和有效性.

    Abstract:

    Particle Swarm Optimization (PSO), as a group intelligence algorithm, effectively improves the practicability of the portfolio model, but it has the disadvantages of low search accuracy and easy to fall into local optimum. In order to overcome its shortcomings, this study proposes a particle swarm optimization algorithm based on the Beetle Antennae Search (Abbreviated as BAS), and applies it to the portfolio model with full cost. In the Optimization algorithm based on BAS (BSO), the update rule of each particle is derived from BAS. In each iteration, it has its own judgment on the environment space, and not only depends on the historical best solution in the PSO and the current global optimal solution of the particle individual, thereby reducing the number of iterations, improving search speed and accuracy. The empirical results show that the algorithm is more stable and effective.

    参考文献
    [1] Khairalla M, Ning X, Al-Jallad N. Modelling and optimisation of effective hybridisation model for time-series data forecasting. The Journal of Engineering, 2018, 2018(2):117-122.[doi:10.1049/joe.2017.0337
    [2] Syahputra R, Wiyagi RO, Suripto S, et al. A novel fuzzy approach for multi-objective optimization of distribution network configuration in complex system. International Journal of Applied Engineering Research, 2018, 13(2):1120-1127
    [3] 陈炜, 张润彤, 杨玲. 基于改进粒子群算法的投资组合选择模型. 计算机科学, 2009, 36(1):146-147, 204.[doi:10.3969/j.issn.1002-137X.2009.01.035
    [4] 刘晓峰, 陈通, 张连营. 基于微粒群算法的最佳证券投资组合研究. 系统管理学报, 2008, 17(2):221-224, 234
    [5] 杨建辉, 江文婷. 基于PSO的考虑完整费用的证券组合优化研究. 计算机应用研究, 2010, 27(9):3364-3367.[doi:10.3969/j.issn.1001-3695.2010.09.043
    [6] 刘冬华, 甘若迅, 樊锁海, 等. 基于捕食策略的粒子群算法求解投资组合问题. 计算机工程与应用, 2013, 49(6):253-256, 261.[doi:10.3778/j.issn.1002-8331.1111-0310
    [7] 吴喆珺. 改进的PSO算法及其在证券组合投资中的应用. 武汉职业技术学院学报, 2014, 13(1):36-41, 69
    [8] 朱沙, 陈臣. 一种求解基数约束投资组合优化的混合粒子群算法. 统计与决策, 2016, (10):64-67
    [9] Zhu ZY, Zhang ZY, Man WS, et al. A new beetle antennae search algorithm for multi-objective energy management in microgrid. 201813th IEEE Conference on Industrial Electronics and Applications (ICIEA). Wuhan, China. 2018. 1599-1603.
    [10] Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan, Japan. 1995. 39-43.
    [11] Jiang XY, Li S. BAS:Beetle antennae search algorithm for optimization problems. arXiv:1710.10724, 2017.
    [12] Wang JY, Chen HX. BSAS:beetle swarm antennae search algorithm for optimization problems. arXiv:1807.10470, 2018.
    相似文献
    引证文献
引用本文

陈婷婷,殷贺,江红莉,王露.基于天牛须搜索的粒子群优化算法求解投资组合问题.计算机系统应用,2019,28(2):171-176

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-08-09
  • 最后修改日期:2018-09-05
  • 在线发布日期: 2019-01-28
  • 出版日期: 2019-02-15
文章二维码
您是第12829690位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号