结合单高斯与光流法的无人机运动目标检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Detection of Moving Objects in UAV Video Based on Single Gaussian Model and Optical Flow Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机场景下运动目标检测对实时性要求高,运动背景、环境光照易变化等问题,提出一种结合单高斯与光流法的运动目标检测算法.首先,对运动相机捕捉的图像采用改进的单高斯模型进行背景建模,并融合前一帧图像的多个高斯模型来进行运动补偿,然后,将得到的前景图像作为掩模来提取特征点和进行光流跟踪,并对稀疏特征点的运动轨迹进行层次聚类.实验结果表明,该算法能有效地处理运动相机造成的前景对背景模型的干扰,背景建模速度快,对光照变化不敏感,检测出的目标接近真实目标.

    Abstract:

    To meet the real-time demand of moving object detection in Unmanned Air Vehicle (UAV), and to cope with the problems of moving background and variable illumination, a novel moving object detection technique based on Single Gaussian Model (SGM) and optical flow is presented. First, an improved SGM is applied to model the background of the image captured by moving camera, and then the corresponding models of previous frame are fused to compensate the motion of camera. Second, the obtained foreground is used as a mask to extract feature points to calculate optical flow, and then these sparse points are clustered to detect the objects. Experimental results demonstrated the effectiveness of the proposed approach in preventing the background model of SGM from being contaminated by the foreground, as well as dealing with illumination changes. It can also update background model quickly and obtain moving objects precisely.

    参考文献
    相似文献
    引证文献
引用本文

范长军,文凌艳,毛泉涌,祝中科.结合单高斯与光流法的无人机运动目标检测.计算机系统应用,2019,28(2):184-189

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-07-16
  • 最后修改日期:2018-08-09
  • 录用日期:
  • 在线发布日期: 2019-01-28
  • 出版日期: 2019-02-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号