基于随机森林的WebShell检测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Webshell Detection Method Based on Random Forest
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    WebShell根据其功能和大小可以分为多种类型,各种类型的WebShell在基本特征上又有其独有的特征,而现有的WebShell检测大多从单一层面提取特征,无法较全面的覆盖各种类型WebShell全部特征,具有种类偏向性,无差别的检测效果差,泛化能力弱等问题.针对这一问题,提出了一种基于随机森林的WebShell检测方法.该方法在数据预处理阶段分别提取文本层的统计特征和文本层源码与编译结果层字节码(opcode)的序列特征,构成较全面的组合特征,然后通过Fisher特征选择选取适当比例的重要特征,降低特征维度,构成样本的特征集,最后采用随机森林分类器训练样本得到检测模型.通过实验表明,本检测方法能有效地检测WebShell,并在准确率、召回率和误报率上都优于单一层面的WebShell检测模型.

    Abstract:

    WebShell can be divided into various types according to its function and size; they have basic features and unique features. However, most existing WebShell detection only extracts features from single level, they cannot cover all the features of various types of WebShell in a more comprehensive way. These detections have problems such as kind bias, poor detection effect, weak generalization ability, etc. To solve these problems, a random forest based WenShell detection method is proposed. In the data preprocessing stage, this method extracts the statistical features of the text layer, and the sequence characteristics of the text layer sources and the compilation result layer opcode, to form a comprehensive combination features. Then, the feature set of the sample is formed by using Fisher feature selection to select important features with the appropriate proportion to reduce the feature dimension. Finally, the random forest classifier is used to train samples to get the detection model. The experiment shows that this detection method can detect WebShell effectively, and it is superior to the single level WebShell detection model in accuracy, recall, and false alarm rate.

    参考文献
    相似文献
    引证文献
引用本文

秦英.基于随机森林的WebShell检测方法.计算机系统应用,2019,28(2):240-245

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-06-29
  • 最后修改日期:2018-07-20
  • 录用日期:
  • 在线发布日期: 2019-01-28
  • 出版日期: 2019-02-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号