基于BP神经网络的SCL译码研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中央高校基本科研业务费专项资金(18CX06042A)


Research on SCL Decoding Based on BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现存极化码译码算法仍然遭受非常高的复杂度.针对此问题,提出一种基于BP神经网络的SCL译码算法,该算法通过离线收集数据来搭建并训练一个合适的BP神经网络;借助已完成训练的BP神经网络,通过在线操作来寻找列表大小L的最优初始值;在此基础上,通过设计一种改进的SCL译码算法来降低复杂度.实验结果表明,与现存算法相比,新算法在低信噪比下能够显著降低平均译码复杂度.

    Abstract:

    Existing decoding algorithms for polar codes still suffer from very high complexity. To solve this problem, an SCL decoding algorithm based on BP neural network is proposed. In offline, the algorithm builds and trains an appropriate BP neural network by collecting data. With the trained BP neural network, the optimal initial value of list size L is found through on-line operation. On this basis, the complexity is reduced by designing an improved SCL decoding algorithm. Experimental results show that compared with existing algorithms, the proposed algorithm can significantly reduce the average decoding complexity at low SNR.

    参考文献
    相似文献
    引证文献
引用本文

卢丽金,李世宝.基于BP神经网络的SCL译码研究.计算机系统应用,2018,27(12):246-250

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-05-09
  • 最后修改日期:2018-06-04
  • 录用日期:
  • 在线发布日期: 2018-12-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号