复杂电磁环境下基于信号稀疏表示的干扰抑制与通信信号重构方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61671375)


Interference Suppression and Communication Signal Reconstruction Method Based on Signal Sparse Representation in Complex Electromagnetic Environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在复杂电磁环境下,通信信号与干扰在时频域重叠而难以分离,针对这一问题,提出了一种基于信号稀疏表示的干扰抑制与通信信号重构方法.首先,通过K阶奇异值分解(K-Singular Value Decomposition,K-SVD)算法,分别构造通信信号与干扰的过完备子字典;然后,对过完备子字典进行联合构建联合字典,利用正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法实现信号的分离和重构;最后,对时频重叠下的2ASK信号和2PSK信号的干扰抑制和重构过程进行了计算机仿真,再对OFDM信号的干扰抑制和信号重构过程进行了实验验证.仿真及实验结果表明:该方法可以实现时频重叠情况下通信信号的干扰抑制与信号重构.

    Abstract:

    In a complex electromagnetic environment, communication signals and interference overlap in the time-frequency domain, and they are difficult to be separated. To solve this problem, a method of interference suppression and communication signal reconstruction based on signal sparse representation is proposed. Firstly, the K-Singular Value Decomposition (K-SVD) algorithm is used to construct the over-complete sub-dictionaries of communication signals and interferences. Then, we build a joint dictionary by over-complete sub-dictionaries, and use the Orthogonal Matching Pursuit (OMP) algorithm to separate and reconstruct the signals. Finally, we simulate the interference suppression and reconstruction process of time-frequency overlapping 2ASK signal and 2PSK signal by computer, and verify the process of interference suppression and signal reconstruction of OFDM signal by experiments. The simulation experimental results show that this method can realize the interference suppression and signal reconstruction of communication signals under the condition of time-frequency overlapping.

    参考文献
    相似文献
    引证文献
引用本文

刘高辉,周熊.复杂电磁环境下基于信号稀疏表示的干扰抑制与通信信号重构方法.计算机系统应用,2018,27(11):149-154

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-03-06
  • 最后修改日期:2018-03-28
  • 录用日期:
  • 在线发布日期: 2018-10-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号