基于多任务CNN的监控视频中异常行人快速检测
作者:
基金项目:

国家重大科技专项(2017ZX03001019)


Fast Abnormal Pedestrians Detection Based on Multi-Task CNN in Surveillance Video
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在近年来社会公共安全受到广泛关注的情况下,如何利用监控视频对异常行人进行监督,预防危险事件的发生成为了一个热门课题.异常行人是指与普通行人在外观上有明显异常性区别的人,例如用头盔大面积遮挡面部或低头躲避摄像头,考虑到异常行人的特征主要集中在头面部,本文提出一种基于多任务卷积神经网络和单类支持向量机的针对头面部特征的异常行人快速检测方法.首先进行头面部区域的检测,然后使用多任务卷积神经网络提取头面部区域的特征,之后使用单类支持向量机判断是正常行人还是异常行人.此外,本文还针对卷积神经网络设计了一种卷积核拆分方法,加快了特征提取的速度,最终实验表明,本文提出的算法能够快速有效的检测出监控视频中的异常行人.

    Abstract:

    In case that public safety has already caused extensive social concern in recent years, how to use surveillance video to detect abnormal pedestrians and prevent dangerous events becomes a hot topic. Abnormal pedestrians are those who are distinctly different from ordinary pedestrians in appearance, for example, using helmet to cover the face or ducking from the camera. Considering that the characteristics of abnormal pedestrians are mainly concentrated in head and face, this study proposes a fast detection method for abnormal pedestrians based on multi-task Convolutional Neural Network (CNN) and one-class Support Vector Machine (SVM) for head-facial features. First, we detect head-facial regions in surveillance video, then we use the multi-task CNN to extract features of these regions, and then we use one-class SVM to judge whether it is a normal pedestrian or not. In addition, this study designs a convolution kernel splitting method for CNN to accelerate the feature extraction speed. Finally, the experiment shows that the algorithm proposed in this study can effectively and quickly detect abnormal pedestrians in surveillance video.

    参考文献
    [1] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai, HI, USA. 2001.
    [2] Liao SC, Jain AK, Li SZ. A fast and accurate unconstrained face detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):211-223. doi:10.1109/TPAMI.2015.2448075
    [3] Wang K, Dong Y, Bai HL, et al. Use fast R-CNN and cascade structure for face detection. Proceedings of 2016 Visual Communications and Image Processing. Chengdu, China. 2016. 1-4.
    [4] Li JJ, Karmoshi S, Zhu M. Unconstrained face detection based on cascaded convolutional neural networks in surveillance video. Proceedings of the 2nd International Conference on Image, Vision and Computing. Chengdu, China. 2017. 46-52.
    [5] Ishii Y, Hongo H, Yamamoto K, et al. Face and head detection for a real-time surveillance system. Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK. 2004. 298-301.
    [6] Ding XF, Xu H, Cui P, et al. A cascade SVM approach for head-shoulder detection using histograms of oriented gradients. Proceedings of 2009 IEEE International Symposium on Circuits and Systems. Taipei, China. 2009. 1791-1794.
    [7] Ji PF, Kim Y, Yang Y, et al. Face occlusion detection using skin color ratio and LBP features for intelligent video surveillance systems. Proceedings of 2016 Federated Conference on Computer Science and Information Systems. Gdansk, Poland. 2016. 253-259.
    [8] Zhang XH, Zhou L, Zhang T, et al. A novel efficient method for abnormal face detection in ATM. Proceedings of 2014 International Conference on Audio, Language and Image Processing. Shanghai, China. 2014. 695-700.
    [9] 张伟峰, 朱明. 基于巡逻小车的人脸遮挡异常事件实时检测. 计算机系统应用, 2017, 26(12):175-180.
    [10] Zhang YL, Lu Y, Wu HT, et al. Face occlusion detection using cascaded convolutional neural network. Proceedings of the 11th Chinese Conference on Biometric Recognition. Chengdu, China. 2016. 720-727.
    [11] Xia YZ, Zhang BL, Coenen F. Face occlusion detection based on multi-task convolution neural network. Proceedings of the 12th International Conference on Fuzzy Systems and Knowledge Discovery. Zhangjiajie, China. 2015. 375-379.
    [12] Dalal N, Triggs B. Histograms of oriented gradients for human detection. Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA. 2005. 886-893.
    [13] Razavian AS, Azizpour H, Sullivan J, et al. CNN features off-the-shelf:An astounding baseline for recognition. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Columbus, OH, USA. 2014. 512-519.
    [14] Schölkopf B, Platt JC, Shawe-Taylor J, et al. Estimating the support of a high-dimensional distribution. Neural Computation, 2001, 13(7):1443-1471. doi:10.1162/089976601750264965
    [15] Rousseeuw PJ, Van Driessen K. A fast algorithm for the minimum covariance determinant estimator. Technometrics, 1999, 41(3):212-223. doi:10.1080/00401706.1999.10485670
    [16] Liu FT, Ting KM, Zhou ZH. Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data, 2012, 6(1):1-39. doi:10.1145/2133360.2133363
    [17] He KM, Zhang XY, Ren SQ, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. Proceedings of the 13th European Conference on Computer Vision-ECCV 2014. Zurich, Switzerland. 2014. 346-361.
    [18] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 2818-2826.
    [19] Howard AG, Zhu ML, Chen B, et al. Mobilenets:Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.
    [20] Liu ZW, Luo P, Wang XG, et al. Deep learning face attributes in the wild. Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile. 2015. 3730-3738.
    [21] 汪廷华, 陈峻婷. 核函数的选择研究综述. 计算机工程与设计, 2012, 33(3):1181-1186. doi:10.3969/j.issn.1000-7024.2012.03.068
    [22] Utkin LV, Chekh AI. A new robust model of one-class classification by interval-valued training data using the triangular kernel. Neural Networks, 2015, 69:99-110. doi:10.1016/j.neunet.2015.05.004
    [23] Jia YQ, Shelhamer E, Donahue J, et al. Caffe:Convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM International Conference on Multimedia. Orlando, FL, USA. 2014. 675-678.
    [24] Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:Machine learning in Python. Journal of Machine Learning Research, 2011, 12(10):2825-2830.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李俊杰,刘成林,朱明.基于多任务CNN的监控视频中异常行人快速检测.计算机系统应用,2018,27(11):78-83

复制
分享
文章指标
  • 点击次数:2150
  • 下载次数: 2722
  • HTML阅读次数: 1630
  • 引用次数: 0
历史
  • 收稿日期:2018-03-26
  • 最后修改日期:2018-04-24
  • 在线发布日期: 2018-10-24
文章二维码
您是第12794702位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号