基于多分类和ResNet的不良图片识别框架
作者:
基金项目:

国家自然科学基金(61371142)


Pornographic Images Recognition Framework Based on Multi-Classification and ResNet
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对实际应用中色情图片的复杂多样性问题,提出一种基于多分类和深度残差网络(ResNet)的不良图片识别框架.不同于已有的方法将色情图片识别作为二分类问题,该方法基于多样性特征将色情图片分为7个更细粒度的类别,并将正常图片分为是否包含人物2个类别,通过50层ResNet模型进行分类,再按照阈值计算是否属于不良图片.为了减少训练时间和挖掘优质特征,采用一种反馈修正的训练策略.提出一种单边滑动窗口的预处理方法以解决图片不同尺度的影响问题.测试结果表明,该方法在时间效率和识别准确率上效果良好.

    Abstract:

    To filter the variety of pornographic images in the reality Internet, the study proposed a Pornographic Images Recognition (PIR) framework based on multi-classification and deep Residual Network (ResNet). Traditional methods usually consider the PIR task as a binary classification, while the approach presented in this paper divides porno images into 7 detailed classes based on its variety features with 2 more benign image classes (with or without human in it). The approach relies on 50-ResNet to extract image features automatically, and then decides whether it belongs to porno images based on the highest score and gives threshold value. At training stage, a feedback-reconstruct training tactics is adopted for the network to collect better features. To deal with images in different scales, a monolateral sliding window method is taken to get better performance. After testing on the data set constructed with collected images from the Internet, the experimental result shows that the approach can reach high accuracy with lower time cost.

    参考文献
    1 凡阿杰. 网络视频色情信息的检测技术研究与应用[硕士学位论文]. 北京:北方工业大学, 2017.
    2 裴向杰, 唐红昇, 陈鹏. 融合YCbCr肤色分割的不良图像检测算法研究. 计算机技术与发展, 2015, 25(12):80-84, 90.
    3 王景中, 周靖. 基于比例特征的网络不良图像过滤算法研究. 计算机工程与科学, 2016, 38(3):514-519.[doi:10.3969/j.issn.1007-130X.2016.03.018]
    4 黄杰, 史啸. 一种基于人体裸露皮肤形状的不良图像过滤系统. 东南大学学报(自然科学版), 2014, 44(6):1111-1115.
    5 Ding M, Fan GL. Multi-layer joint gait-pose manifold for human motion modeling. Proceedings of 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Shanghai, China. 2015. 1-8.[doi:10.1109/TCYB.2014.2373393]
    6 Shao H, Yu TS, Xu MJ, et al. Image region duplication detection based on circular window expansion and phase correlation. Forensic Science International, 2012, 222(1-3):71-82.[doi:10.1016/j.forsciint.2012.05.002]
    7 Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6):84-90.[doi:10.1145/3098997]
    8 He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 770-778.[doi:10.1109/CVPR.2016.90]
    9 Moustafa M. Applying deep learning to classify pornographic images and videos.Computer Science, 2015. (未找到卷期,页码信息, 请补充)
    10 Zhou KL, Zhuo L, Geng Z, et al. Convolutional neural networks based pornographic image classification. 2016 IEEE Second International Conference on Multimedia Big Data. Taipei, China. 2016. 206-209.[doi:10.1109/BigMM.2016.29]
    11 Huang Y, Kong AWK. Using a CNN ensemble for detecting pornographic and upskirt images. 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS). Niagara Falls, NY, USA. 2016. 1-7.
    12 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Computer Science, 2014:1-14. (未找到卷期信息, 请补充)[doi:10.5121/csit.2014.41000]
    13 Szegedy C, Liu W, Jia YQ, et al. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA. 2015. 1-9.[doi:10.1109/CVPR.2015.7298594]
    14 Wang YH, Jin X, Tan XY. Pornographic image recognition by strongly-supervised deep multiple instance learning. 2016 IEEE International Conference on Image Processing (ICIP). Phoenix, AZ, USA. 2016. 4418-4422.[doi:10.1109/ICIP.2016.7533195]
    15 Nian FD, Li T, Wang Y, et al. Pornographic image detection utilizing deep convolutional neural networks. Neurocomputing, 2016, 210:283-293.[doi:10.1016/j.neucom.2015.09.135]
    16 Connie T, Al-Shabi M, Goh M. Smart content recognition from images using a mixture of convolutional neural networks. IT Convergence and Security 2017. Springer. Singapore. 2018. 11-18.
    17 Zhuo L, Geng Z, Zhang J, et al. ORB feature based web pornographic image recognition. Neurocomputing, 2016, 173:511-517.[doi:10.1016/j.neucom.2015.06.055]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王景中,杨源,何云华.基于多分类和ResNet的不良图片识别框架.计算机系统应用,2018,27(9):100-106

复制
分享
文章指标
  • 点击次数:2850
  • 下载次数: 4469
  • HTML阅读次数: 3457
  • 引用次数: 0
历史
  • 收稿日期:2018-01-14
  • 最后修改日期:2018-02-09
  • 在线发布日期: 2018-08-17
文章二维码
您是第12795961位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号