深度先验图像特征在城市遥感大数据中的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2016YFE0100300)


Application of Image Feature Extraction Based on Depth Prior in Urban Remote Sensing Big Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    图像特征提取始终是计算机视觉和图像处理的核心任务.随着深度学习的快速发展,卷积神经网络逐渐取代传统图像特征算子,成为特征提取的主要算法.本文针对城市遥感数据众包标记系统中的数据关联问题,结合卷积神经网络和池化编码,提出基于深度先验的图像特征提取方法.该特征能有效聚焦室外图像近处物体,并通过图像检索实验验证了其对室外图像的良好表征能力.

    Abstract:

    Image feature extraction is always the core task of computer vision and image processing. With the rapid development of deep learning, the Convolutional Neural Network (CNN) has gradually replaced the traditional image feature operator and became the main algorithm for feature extraction. Combined with CNN and sum pooling, we propose a new image feature extraction algorithm based on depth prior aiming at the data association problem in the crowd sourcing labeling system for urban remote sensing data. The feature can effectively focus on the objects in the vicinity of outdoor images and verify their good characterization of outdoor images via image retrieval experiments.

    参考文献
    相似文献
    引证文献
引用本文

申金晟,池明旻.深度先验图像特征在城市遥感大数据中的应用.计算机系统应用,2018,27(9):33-39

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-12-06
  • 最后修改日期:2017-12-27
  • 录用日期:
  • 在线发布日期: 2018-07-26
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号