基于背景感知的显著性目标检测算法
作者:
基金项目:

国家自然科学基金(61379036,61502430);国家自然科学基金委中丹合作项目(61361136002);浙江省重大科技专项重点工业项目(2014C01047);浙江理工大学521人才培养计划(20150428)


Saliency Detection Algorithm Based on Background Awareness
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在显著性目标检测算法中,流形排序的检测方法存在先验背景假设和目标检测不完整的问题.针对该问题,在流形排序算法基础上,融入背景鉴别、BING特征估计和权重调整,提出了一种基于背景感知的显著性目标检测算法.首先,通过计算颜色聚类后的边界区域的综合差异度,得到真实背景种子点,从而感知到真实背景区域;再结合图像的BING特征与初始显著图信息,获取目标位置,从而得到完整的前景种子点区域;然后重构前景区域的图模型且利用加权k-壳分解法,来调整前景区域节点之间的连接权重,进而获得清晰的目标边界.实验结果表明,同当前经典的一些算法比较,本文算法在准确率、召回率、F-measure和平均MAE上都优于其余算法.

    Abstract:

    In the saliency detection algorithm, there are some problems in the detection of the manifold ranking, such as the over ideal of the background and the incomplete target detection. Aiming at these problems, this study incorporated background identification, BING feature estimation, and weight adjustment in traditional manifold rank algorithm, and a method was proposed based on background awareness. Firstly, through the adaptive color clustering of the boundary area and calculating the synthetic difference degree to get the real background seed point, the real background areas were sensed. Then the BING feature of the image was calculated and the saliency map information was combined to obtain the target position, so as to obtain the complete foreground seed point area. Next, by reconstructing the graph model of the foreground region and using the weighted k-shell decomposition method, we adjusted the connection weight between the nodes in the foreground region to obtain a clear target boundary. The experimental results show that the proposed algorithm is superior to other algorithms in terms of precision, recall, F-measure, and average MAE compared with some classical algorithms.

    参考文献
    [1] 白雪飞, 王文剑, 梁吉业. 基于区域显著性的活动轮廓分割模型. 计算机研究与发展, 2012, 49(12):2686-2695.
    [2] 曲延云, 郑南宁, 李翠华, 等. 基于支持向量机的显著性建筑物检测. 计算机研究与发展, 2007, 44(1):141-147.
    [3] 冯松鹤, 郎丛妍, 须德. 一种融合图学习与区域显著性分析的图像检索算法. 电子学报, 2011, 39(10):2288-2294.
    [4] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259.[DOI:10.1109/34.730558]
    [5] Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection. Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA. 2009. 1597-1604.
    [6] Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012, 34(10):1915-1926.[DOI:10.1109/TPAMI.2011.272]
    [7] Hou XD, Zhang LQ. Saliency detection:A spectral residual approach. Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN, USA. 2007. 1-8.
    [8] Cheng MM, Zhang GX, Mitra NJ, et al. Global contrast based salient region detection. Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA. 2015. 409-416.
    [9] Yan Q, Xu L, Shi JP, et al. Hierarchical saliency detection. Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA. 2013. 1155-1162.
    [10] Perazzi F, Krähenbühl P, Pritch Y, et al. Saliency filters:Contrast based filtering for salient region detection. Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA. 2012. 733-740.
    [11] Zhu WJ, Liang S, Wei YC, et al. Saliency optimization from robust background detection. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. 2014. 2814-2821.
    [12] 吕建勇, 唐振民. 一种基于图的流形排序的显著性目标检测改进方法. 电子与信息学报, 2015, 37(11):2555-2563.[DOI:10.11999/JEIT150619]
    [13] Jiang BW, Zhang LH, Lu HC, et al. Saliency detection via absorbing Markov chain. Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia. 2013. 1665-1672.
    [14] Wei YC, Wen F, Zhu WJ, et al. Geodesic saliency using background priors. Proceedings of the 12th European Conference on Computer Vision. Florence, Italy. 2012. 29-42.
    [15] 张巧荣. 利用背景先验的显著性检测算法. 中国图象图形学报, 2016, 21(2):165-173.[DOI:10.11834/jig.20160205]
    [16] 徐威, 唐振民. 利用层次先验估计的显著性目标检测. 自动化学报, 2015, 41(4):799-812.
    [17] Yang C, Zhang LH, Lu HC, et al. Saliency detection via graph-based manifold ranking. Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA. 2013. 3166-3173.
    [18] 朱征宇, 汪梅. 基于Manifold Ranking和结合前景背景特征的显著性检测. 计算机应用, 2016, 36(9):2560-2565.[DOI:10.11772/j.issn.1001-9081.2016.09.2560]
    [19] 周强强, 赵卫东, 柳先辉, 等. 一种前景和背景提取相结合的图像显著性检测. 计算机辅助设计与图形学学报, 2017, 29(8):1396-1407.
    [20] 邓凝旖, 沈志强, 郭跃飞. 基于类别先验与深度神经网络特征的显著性检测. 计算机工程, 2017, 43(6):225-229.
    [21] Cheng MM, Zhang ZM, Lin WY, et al. BING:Binarized normed gradients for objectness estimation at 300 fps. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. 2014. 3286-3293.
    [22] Garas A, Schweitzer F, Havlin S. A k-shell decomposition method for weighted networks. New Journal of Physics, 2012, 14(8):083030.[DOI:10.1088/1367-2630/14/8/083030]
    [23] Qin Y, Lu HC, Xu YQ, et al. Saliency detection via cellular automata. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA. 2015. 110-119.
    [24] Wang QS, Zheng W, Piramuthu R. GraB:Visual saliency via novel graph model and background priors. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 535-543.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

包晓安,朱晓芳,张娜,高春波,胡玲玲,桂江生.基于背景感知的显著性目标检测算法.计算机系统应用,2018,27(6):103-110

复制
分享
文章指标
  • 点击次数:2327
  • 下载次数: 2437
  • HTML阅读次数: 1946
  • 引用次数: 0
历史
  • 收稿日期:2017-09-26
  • 最后修改日期:2017-10-24
  • 在线发布日期: 2018-05-29
文章二维码
您是第12824110位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号