基于聚类分割和特征点的显著区域检测算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61672171);广东省教育厅重大科研项目(2016KZDXM052);广东司法警官职业学院院级课题(2017YB007)


New Regions of Interest Detector Algorithm Based on Clustering Segmentation and Feature Points
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对彩色图像中的显著区域检测,对基于聚类分割的特征点检测算法及基于亮度、颜色和梯度多特征的显著区域检测算法进行了研究,提出一种基于特征点和聚类分割的显著区域检测算法,该算法的处理思路是先对目标彩色图像利用高斯低通滤波和局部熵纹理分割去除纹理区,得到R、G、B分量的滤波灰度图,聚类分割自动划分出每个分量的最亮区域、最暗区域和剩余区域这三个区域,每个颜色分量选择最亮或最暗这两个区域与剩余区域亮度差值最大的一个区域,对此选择区域边界进行角点、边缘点检测,将其角点和边缘点作为显著点,然后通过数学形态学将显著点扩展到显著区域.利用公共数据库中的多幅自然图像进行实验对比,实验结果显示本文所提算法不仅提高了检测准确性,同时简化了计算过程,验证了该算法在提取尤其是纹理复杂的图像的显著区域上的有效性.

    Abstract:

    This study proposes a saliency detection algorithm based on the fuzzy enhancement and feature points, using fuzzy enhancement and clustering segmentation to highlights the image object and internal classification. First, extract significant edge points and corner points, calculate the multiple features' means of those points, such as the brightness, color, and gradient features. Then, find all points which are belong to salient regions are closer to the means in the original image. By mathematical morphology to make sure the largest connected region, get salient regions finally. The experimental results show that the algorithm presented in this paper for saliency detection, can improve the accuracy and simplify the computation, the algorithm has an important role in the saliency detection, especially complex texture image.

    参考文献
    相似文献
    引证文献
引用本文

占善华,陈晓明.基于聚类分割和特征点的显著区域检测算法.计算机系统应用,2018,27(6):95-102

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-09-29
  • 最后修改日期:2017-10-25
  • 录用日期:
  • 在线发布日期: 2018-05-29
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号