基于DPP改进RANSAC算法的图像拼接
作者:
基金项目:

国家自然科学基金(61602402);浙江省公益技术研究项目(2016C31085)


Image Stitching Based on DPP Improved RANSAC Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为提高图像拼接时的配准速度和精度,针对鲁棒性模型估计问题,提出一种基于行列式点过程的改进RANSAC算法(Random Sample Consensus).该方法利用行列式点过程抽样法的全局负相关特性对匹配的特征点进行建模,实现抽样点的均匀化和分散化,剔除一些错误匹配点.用行列式点过程抽取的点集作为RANSAC算法的输入来求取变换矩阵.实验结果表明:该算法相对于传统的RANSAC算法,能够保持较高的精度和鲁棒性,减少传统RANSAC算法迭代次数,显著提升图像自动拼接的计算效率.

    Abstract:

    To improve the speed and precision of registration in image stitching, this study proposes a modified RANSAC algorithm based on Determinantal Point Processes (DPP), aiming to tackle the issue of robustness model estimation. This method utilizes global negative correlation of the DPP sampling to model matching feature points, eliminates those incorrect matching points, and therefore realizes the homogenization and decentralization of the sampling. The point set extracted in DPP is used as the input of RANSAC to elicit transformation matrix. Experimental results show that compared with traditional RANSAC algorithm, this algorithm ensures higher accuracy and robustness, which greatly enhances the efficiency of automatic image stitching.

    参考文献
    [1] 张亚娟. 基于SURF特征的图像与视频拼接技术的研究[硕士学位论文]. 西安:西安电子科技大学, 2013.
    [2] Armangué X, Salvi J. Overall view regarding fundamental matrix estimation. Image and Vision Computing, 2003, 21(2):205-220.[DOI:10.1016/S0262-8856(02)00154-3]
    [3] 魏若岩, 阮晓钢. 于乃功, 等. 基于Skinner操作条件反射的抽样一致性算法. 控制与决策, 2015, 30(2):235-240.
    [4] 唐永鹤, 胡旭峰, 卢焕章. 应用序贯相似检测的基本矩阵快速鲁棒估计. 光学精密工程, 2011, 19(11):2759-2766.
    [5] Torr PHS, Zisserman A. MLESAC:A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 2000, 78(1):138-156.[DOI:10.1006/cviu.1999.0832]
    [6] Chum O, Matas J. Matching with PROSAC-progressive sample consensus. Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA. 2005. 220-226.
    [7] Hast A, Nysjö J, Marchetti A. Optimal ransac-towards a repeatable algorithm for finding the optimal set. Journal of WSCG, 2015, 21(1):21-30
    [8] Lowe DG. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2):91-110.[DOI:10.1023/B:VISI.0000029664.99615.94]
    [9] 徐敏, 莫东鸣, 张祯. 高斯二阶差分特征算子在图像拼接中的应用. 计算机系统应用, 2016, 25(4):167-173.
    [10] Brown M, Szeliski R, Winder S. Multi-image matching using multi-scale oriented patches. Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA. 2005. 510-517.
    [11] Fischler MA, Bolles RC. Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6):381-395.[DOI:10.1145/358669.358692]
    [12] Kulesza A, Taskar B. Determinantal point processes for machine learning. Foundations and Trends in Machine Learning, 2012, 5(2-3):123-286.[DOI:10.1561/2200000044]
    [13] Johansson K. Determinantal processes with number variance saturation. Communications in Mathematical Physics, 2004, 252(1-3):111-148.[DOI:10.1007/s00220-004-1186-4]
    [14] Kulesza A, Taskar B. k-DPPs:Fixed-size determinantal point processes. Proceedings of the 28th International Conference on Machine Learning. Bellevue, WA, USA. 2011. 1193-1200.
    [15] Decreusefond L, Flint I, Privault N, et al. Determinantal point processes. Peccati G, Reitzner M. Stochastic Analysis for Poisson Point Processes. Cham:Springer, 2016. 311-342.
    [16] Shao H, Chen S, Zhao JY, et al. Face recognition based on subset selection via metric learning on manifold. Frontiers of Information Technology & Electronic Engineering, 2015, 16(12):1046-1058.
    [17] Yu TS, Wang RS. Graph matching with low-rank regularization. Proceedings of 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Placid, NY, USA. 2016. 1-9.
    [18] Tong RF, Zhang Y, Cheng KL. StereoPasting:Interactive composition in stereoscopic images. IEEE Trans. on Visualization and Computer Graphics, 2013, 19(8):1375-1385.[DOI:10.1109/TVCG.2012.319]
    [19] Adwan S, Alsaleh I, Majed R. A new approach for image stitching technique using Dynamic Time Warping (DTW) algorithm towards scoliosis X-ray diagnosis. Measurement, 2016, (84):32-46.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪旌,张赟,陈爽.基于DPP改进RANSAC算法的图像拼接.计算机系统应用,2018,27(5):112-118

复制
分享
文章指标
  • 点击次数:2104
  • 下载次数: 2433
  • HTML阅读次数: 1345
  • 引用次数: 0
历史
  • 收稿日期:2017-09-15
  • 最后修改日期:2017-09-30
  • 在线发布日期: 2018-04-23
文章二维码
您是第11245625位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号