自编码器理论与方法综述
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61602250,61503188);江苏省自然科学基金(BK20150983,BK20150982);江苏省高校自然科学研究面上项目(16KJB520025,15KJB470010)


Survey on Theories and Methods of Autoencoder
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    自编码器作为深度学习的一个重要分支,吸引了该领域内大量杰出的研究者.研究者们深入研究其本质并在此基础上提出了很多的优化方法,如稀疏自编码器、降噪自编码器、收缩自编码器和卷积自编码器等.在深入阅读了多篇基于自编码器方法的文献之后,我们发现优化后的自编码器在图像分类、自然语言处理、目标识别等方面都取得了较好的实验结果.因此,本文将详细地分析优化后自编码器的基本结构和原理,并对文献中的实验结果进行多方面的评价与分析.

    Abstract:

    Autoencoder, as an important branch of deep learning, has appealed many outstanding researchers in this field. Researchers studied its essence, and proposed many optimized approaches, such as sparse autoencoder, denoising autoencoder, contractive autoencoder, and convolutional autoencoder. After reading a number of articles on autoencoder methods, we found that the optimized autoencoder had sound experimental results in terms of image classification, natural language processing, and object recognition. Therefore, this review analyzes the basic principle and structure of optimized autoencoder in details. In addition, the multi-perspectives evaluation and analysis on the experimental results in literatures are carried out as well.

    参考文献
    相似文献
    引证文献
引用本文

贾文娟,张煜东.自编码器理论与方法综述.计算机系统应用,2018,27(5):1-9

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-08-29
  • 最后修改日期:2017-09-15
  • 录用日期:
  • 在线发布日期: 2018-03-12
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号