新疆褐牛背线边缘检测自动分级算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Automatic Grading Algorithm of Xinjiang Brown Cattle Based on Digital Image Processing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    牛的背线在新疆褐牛体型鉴定及分级中是重要的指标之一,背线的水平程度反应了牛的生长状况,是选优育种的重要指标. 本文依据新疆褐牛体型线性鉴定标准,以牛侧面图像(主要是从胸后到十字步的图像)为研究对象,采用数字图像处理的方法,先对图像进行二值化处理,再对二值化图像进行边缘检测,实现对牛背线边缘点的自动提取. 最后通过分析背线边缘点数据,得到牛背线情况的自动分级,具体将背线分为45,35,25,15,5五个等级,得分越高,牛的生长情况越好. 实验表明该算法有效可行,能准确快速的得到新疆褐牛背线自动分级结果.

    Abstract:

    The dorsal line of cattle is one of the most important indexes in the identification and classification of Xinjiang brown cattle, and the level of the back line reflects the growth of cattle, which is an important index for selection and breeding. Based on the identification standard of linear type of Xinjiang brown cattle, taking cattle side image (mainly from the chest to the cross step image) as the research object, this paper uses digital image processing method first to process the image binarization, and then to detect the edge of image binarization, realizing the automatic extraction of the edge points of the back line cattle. Finally, through the analysis of the data of the edge of the back line, it gets the automatic classification of the cattle back line, and divides the line into five grades: 45, 35, 25, 15, 5. The higher the score is, the better the growth of cattle is. The experiment shows that the algorithm is effective and feasible, and can get the result of automatic classification of Xinjiang brown cattle back line fast and precisely.

    参考文献
    相似文献
    引证文献
引用本文

谢云鹏,李艳梅,杜洁.新疆褐牛背线边缘检测自动分级算法.计算机系统应用,2018,27(2):261-265

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-03-28
  • 最后修改日期:2017-04-20
  • 录用日期:
  • 在线发布日期: 2018-02-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号