混合卷积神经网络的人脸验证
作者:
基金项目:

国家自然科学基金(61100139);湖南省教育厅青年项目(16B258);湖南省自然科学基金(2017JJ2252)


Face Verification of Mixed Convolutional Neural Networks
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    人脸验证对于个人身份认证很重要,它在系统安全和犯罪识别中具有重要意义. 人脸验证的任务是给定一对人脸图像判断是否为相同的身份(即二进制分类). 传统的验证方法包括两个步骤:特征提取和人脸验证. 提出了一个混合卷积神经网络,用于进行人脸验证,主要过程分为三个步骤:特征提取,特征选择和人脸验证. 这个模型关键点是直接使用混合卷积神经网络从原始像素直接学习相关的视觉特征,并通过单变量特征选择和主成分分析(PCA)进一步处理特征. 这样可以实现从原始像素提取到具有较好鲁棒性和表达性的特征. 在顶层使用支持向量机(SVM)判读是否为同一个人. 通过实验可以发现混合卷积神经网络模型与传统方法相比在人脸验证得准确率上有着较好的表现.

    Abstract:

    Face verification is important for personal identity authentication, which is significant in system security and criminal identification. Face verification task is to give a pair of face images to determine whether they are of the same identity (i.e. binary classification). The traditional authentication method consists of two steps: feature extraction and face verification. In this study, a hybrid convolutional neural network (HBCNN) is proposed for face verification. The main process is divided into three steps: feature extraction, feature selection, and face verification. The key point of this model is to directly use the mixed convolutional neural network to learn the relevant visual features directly from the original pixels and to further process the features through univariate feature selection and principal component analysis (PCA). This can be achieved from the original pixel extraction to a better robustness and expression of the characteristics. The support vector machine (SVM) at the top level is used to see if it is the same person. Experiments show that the mixed convolutional neural network model has a better performance than the traditional method in verifying accuracy of face verification.

    参考文献
    [1] Sun Y, Wang XG, Tang XO. Hybrid deep learning for face verification. Proceedings of the IEEE International Conference on Computer Vision. Sydney, NSW, Australia. 2013. 1489-1496.
    [2] Sun Y, Wang XG, Tang XO. Deep learning face representation from predicting 10,000 classes. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. 2014. 1891-1898.
    [3] Sun Y, Chen YH, Wang XG, et al. Deep learning face representation by joint identification-verification. Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada. 2014. 1988-1996.
    [4] Sun Y, Wang XG, Tang XO. Deeply learned face representations are sparse, selective, and robust. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA. 2015. 2892-2900.
    [5] Taigman Y, Yang M, Ranzato MA, et al. Deepface: Closing the gap to human-level performance in face verification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. 2014. 1701-1708.
    [6] Guillaumin M, Verbeek J, Schmid C. Is that you? Metric learning approaches for face identification. Proceedings of the 12th International Conference on Computer Vision. Kyoto, Japan. 2009. 498-505.
    [7] Nguyen HV, Bai L. Cosine similarity metric learning for face verification. Proceedings of the 10th Asian Conference on Computer Vision. Queenstown, New Zealand. 2010. 709-720.
    [8] Lowe DG. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110. [DOI:10.1023/B:VISI.0000029664.99615.94]
    [9] Wiskott L, Krüger N, Kuiger N, et al. Face recognition by elastic bunch graph matching. IEEE transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 775-779. [DOI:10.1109/34.598235]
    [10] Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86. [DOI:10.1162/jocn.1991.3.1.71]
    [11] Yang MH, Ahuja N, Kriegman D. Face recognition using kernel eigenfaces. Proceedings of the 2000 International Conference on Image Processing. Vancouver, BC, Canada. 2000, 1. 37-40.
    [12] Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720. [DOI:10.1109/34.598228]
    [13] Simonyan K, Parkhi OM, Vedaldi A, et al. Fisher vector faces in the wild. Proceedings of the British Machine Vision Conference (BMVC). Bristol, UK. 2013.
    [14] Huang C, Zhu SH, Yu K. Large-scale strongly supervised ensemble metric learning. US Patent 8873844. [2014-10-28].
    [15] Huang GB, Lee H, Learned-Miller E. Learning hierarchical representations for face verification with convolutional deep belief networks. Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA. 2012. 2518-2525.
    [16] Kumar N, Berg AC, Belhumeur PN, et al. Attribute and simile classifiers for face verification. Proceedings of the 12th International Conference on Computer Vision. Kyoto, Japan. 2009. 365-372.
    [17] Berg T, Belhumeur PN. Tom-vs-pete classifiers and identity-preserving alignment for face verification. Proceedings of the British Machine Vision Conference (BMVC). Surrey, Canada. 2012.
    [18] Shao H, Chen S, Zhao JY, et al. Face recognition based on subset selection via metric learning on manifold. Frontiers of Information Technology & Electronic Engineering, 2015, 16(12): 1046-1058.
    [19] Li QF, Zhou XF, Gu AH, et al. Nuclear norm regularized convolutional Max Pos@Top machine. Neural Computing & Applications, 2016: 1-10. [DOI:10.1007/s00521-016-2680-2]
    [20] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA. 2012. 1097-1105.
    [21] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [DOI:10.1109/5.726791]
    [22] Bouvrie J. Notes on convolutional neural networks. Neural Nets, 2006. https://pdfs.semanticscholar.org/2a43/93aa1bc3cb7fe2deecc88720bfb84dabb263.pdf.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭明金,倪佳佳,陈姝.混合卷积神经网络的人脸验证.计算机系统应用,2018,27(2):24-29

复制
分享
文章指标
  • 点击次数:2335
  • 下载次数: 2492
  • HTML阅读次数: 1314
  • 引用次数: 0
历史
  • 收稿日期:2017-05-08
  • 最后修改日期:2017-05-31
  • 在线发布日期: 2018-02-05
文章二维码
您是第12828424位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号