结合人脸图像和脑电的情绪识别技术
作者:
基金项目:

国家自然科学基金青年科学基金(61503143);广东省自然科学基金博士科研启动项目(2014A030310244);广州市科技计划项目珠江科技新星专题项目(201710010038)


Fusion of Facial Expressions and EEG for Emotion Recognition
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文通过人脸图像和脑电两个输入信号对情绪识别技术展开研究. 采用对应不同情绪的电影片段对被实验者进行情绪刺激的方法采集输入信号. 通过表情识别出八种基本表情的分类,通过脑电识别出情绪的三种强弱波动. 通过决策层面的信息融合,进行情绪分类. 最终的识别准确率达到89.5%,高于采用单模态进行识别的准确率,分别为:表情识别:81.35%,脑电识别:71.53%.

    Abstract:

    This study focuses on emotion recognition technology. The input signals are EEG and facial expression. The stimuli are based on a subset of movie clips that correspond to four specific areas of valance-arousal emotional space. In facial expression detection, one of the four basic emotional states is determined. In EEG detection, one of the three emotional intensities is determined. Emotion recognition is based on a decision-level fusion of both EEG and facial expression detection. The results show that the accuracy of information fusion detection is 89.5%, which is higher than that of facial expression (81.35%) or EEG detection (71.53%).

    参考文献
    [1] Ekman P, Friesen WV. Facial action coding system: A technique for the measurement of facial movement. Palo Alto: Consulting Psychologists Press, 1978.
    [2] Shao H, Chen S, Zhao JY, et al. Face recognition based on subset selection via metric learning on manifold. Frontiers of Information Technology & Electronic Engineering, 2015, 16(12): 1046-1058.
    [3] Hu XP, Wang Y, Zhu FY, et al. Learning-based fully 3D face reconstruction from a single image. Proceedings of 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai, China. 2016. 1651-1655.
    [4] 王志良, 陈锋军, 薛为民, 人脸表情识别方法综述. 计算机应用与软件, 2003, 20(12): 63-66. [DOI:10.3969/j.issn.1000-386X.2003.12.027]
    [5] Murugappan M, Rizon M, Nagarajan R, et al. EEG feature extraction for classifying emotions using FCM and FKM. International Journal of Computers and Communications, 2007, 2(1): 21-25.
    [6] Bos DO. EEG-based emotion recognition. The Influence of Visual and Auditory Stimuli, 2006.
    [7] Yazdani A, Lee JS, Ebrahimi T. Implicit emotional tagging of multimedia using EEG signals and brain computer interface. Proceedings of the First SIGMM Workshop on Social Media. Beijing, China. 2009. 81-88.
    [8] Petrantonakis PC, Hadjileontiadis LJ. Emotion recognition from EEG using higher order crossings. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(2): 186-197. [DOI:10.1109/TITB.2009.2034649]
    [9] 江伟坚, 郭躬德, 赖智铭. 基于新Haar-like特征的Adaboost人脸检测算法. 山东大学学报(工学版), 2014, 44(2): 43-48. [DOI:10.6040/j.issn.1672-3961.1.2013.003]
    [10] 曾阳艳, 叶柏龙. 基于PCA方法的人脸特征提取和检测. 电脑知识与技术, 2008, 1(4): 742-744.
    [11] 高绪伟. 核PCA特征提取方法及其应用研究[硕士学位论文]. 南京: 南京航空航天大学, 2009.
    [12] 王剑云. 基于深度神经网络的表情识别算法[硕士学位论文]. 绵阳: 西南科技大学, 2015.
    [13] 张国云. 支持向量机算法及其应用研究[博士学位论文]. 长沙: 湖南大学, 2006.
    [14] Bradley MM, Lang PJ. Measuring emotion: The self-assessment Manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 1994, 25(1): 49-59. [DOI:10.1016/0005-7916(94)90063-9]
    [15] Li M, Lu BL. Emotion classification based on gamma-band EEG. Proceedings of 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, MN, USA. 2009. 1223-1226.
    引证文献
引用本文

黄泳锐,杨健豪,廖鹏凯,潘家辉.结合人脸图像和脑电的情绪识别技术.计算机系统应用,2018,27(2):9-15

复制
相关视频

分享
文章指标
  • 点击次数:3536
  • 下载次数: 4303
  • HTML阅读次数: 2513
  • 引用次数: 0
历史
  • 收稿日期:2017-04-27
  • 最后修改日期:2017-05-19
  • 在线发布日期: 2018-02-05
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号