基于A*引导域的RRT智能车辆路径规划算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61503362,91420104);安徽省自然科学基金(1508085MF133)


Guiding-Area RRT Path Planning Algorithm Based on A* for Intelligent Vehicle
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了泛化RRT (快速搜索随机树)算法在智能车辆路径规划领域内的应用,解决该算法搜索效率低、最近邻搜索函数不合理等问题,本文提出了一种基于A*引导域的RRT路径规划算法.该算法将A*算法与RRT搜索算法进行有效地结合,利用由A*算法在低分辨率栅格图中生成的最短路径来构建引导域,以提升RRT算法的采样效率;同时在设计RRT算法的最近邻搜索函数时考虑车辆自身约束,以增强搜索树节点选择的合理性.通过仿真实验和实车测试,对该算法的优越性、有效性和实用性进行了验证.

    Abstract:

    This paper proposes a RRT path planning algorithm based on the guiding-area which is generated with the A* algorithm. This algorithm can benefit the domain from the following aspects: the applications of RRT algorithm to the field of path planning for the intelligent vehicle can be improved significantly. The performance of the traditional RRT algorithm can be enhanced by solving some inherent issues, such as low searching efficiency, irrational nearest neighbour searching functions etc. The novel algorithm combines A* and RRT effectively. Based on low resolution grid map, A* algorithm is applied to construct the guiding area, which is used to improve the sampling efficiency. To enhance the reasonableness of the selection of searching tree node, the vehicle’s constraints are considered in the design of the nearest neighbour searching function. Finally, the superiority, validity and practicability of the proposed algorithm is verified in simulations and experiments with the real vehicle

    参考文献
    相似文献
    引证文献
引用本文

冯来春,梁华为,杜明博,余彪.基于A*引导域的RRT智能车辆路径规划算法.计算机系统应用,2017,26(8):127-133

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-08-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-10-31
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号