电网供电系统短期电力负荷预测优化仿真
作者:
基金项目:

甘肃省自然基金(1308RJZA117)


Grid Power System Short-Term Load Forecasting Simulation Optimization
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    对电网供电系统短期电力负荷预测模型进行优化,能提升预测结果的准确性和鲁棒性.虽然现有预测模型可以满足预测速度的要求,但预测结果的精确性和稳定性却无法保证.为了得到更加准确和稳定的预测结果,提出了细菌觅食算法优化极限学习机预测模型.首先在电力负荷样本数据中形成训练样本和预测样本集,利用细菌觅食优化算法对极限学习机预测模型中的不确定参数进行优化,然后利用改进后的模型进行电力负荷预测.新模型的优化仿真结果显示,利用细菌觅食算法优化极限学习机预测模型的预测精度和稳定性均优于传统预测模型的预测结果,该算法具有很好地实用性.

    Abstract:

    The optimization of short-term load forecasting simulation for the Grid power system can improve prediction accuracy and robustness of the results. Although the existing prediction models can meet the requirements of prediction speed, the accuracy and stability of the predicted results are always difficult to guarantee. In order to get more accurate and stable forecast results, this paper puts forward the bacterial foraging algorithm to optimize the new predicting model of the extreme learning machine. First, the training sample and forecast sample set are formed in the power load sampling data set. The bacteria foraging optimization algorithm is used to optimize the uncertain parameters in the prediction model of extreme learning machine algorithm. Then, the improved model for power load forecasting is used. Through the optimization of the new model simulation, the results show that the use of bacterial foraging algorithm optimization model to predict extreme learning machine precision and stability are superior to the traditional forecasting model prediction results, and the algorithm has good practicability.

    参考文献
    1 王晓丹, 王积勤. 支持向量机研究与应用. 空军工程大学学报(自然科学版), 2004, 5(3):49-55.
    2 李云飞. 支持向量机在电力系统短期负荷预测中的应用及改进[硕士学位论文]. 成都:西南交通大学, 2006.
    3 张庆宝, 程浩忠, 刘青山, 等. 基于粗糙集属性约简算法和支持向量机的短期负荷预测. 电网技术, 2006, 30(8):56-59, 70.
    4 贾东梨, 孟晓丽, 宋晓辉. 基于超短期负荷预测的智能配电网状态估计. 电力建设, 2013, 34(1):31-35.
    5 杨廷志, 文小飞, 万俊, 等. 改进神经网络的短期负荷预测模型及仿真. 计算机仿真, 2014, 31(10):145-150, 176.
    6 Kouh S, Keynia F. A new cascade NN based method to short-term load forecast in deregulated electricity market. Energy Conversion and Management, 2013, 71:76-83.[DOI:10.1016/j.enconman.2013.03.014]
    7 Grant JL. Short-term peak demand forecasting using an artificial neural network with controlled peak demand through intelligent electrical loading[Ph. D. thesis]. Miami:University of Miami, 2014:54-61.
    8 Sudheer G, Suseelatha A. A wavelet-nearest neighbor model for short-term load forecasting. Energy Science & Engineering, 2015, 3(1):51-59.
    9 Sudheer G, Suseelatha A. Short term load forecasting using wavelet transform combined with Holt-Winters and weighted nearest neighbor models. International Journal of Electrical Power & Energy Systems, 2015, 64:340-346.
    10 Huang GB, Zhu QY, Siew CK. Extreme learning machine:A new learning scheme of feedforward neural networks. Proc. of 2004 IEEE International Joint Conference on Neural Networks. Budapest, Hungary. 2004. 985-990.
    11 刘晓娟, 方建安. 基于双修正因子的模糊时间序列日最大负荷预测. 中国电力, 2013, 46(10):115-118.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王惠中,杨世亮,卢玉飞.电网供电系统短期电力负荷预测优化仿真.计算机系统应用,2017,26(8):147-151

复制
分享
文章指标
  • 点击次数:1486
  • 下载次数: 2451
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-08-17
  • 在线发布日期: 2017-10-31
文章二维码
您是第12828882位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号