基于动态调整的多目标粒子群优化算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省自然科学基金(ZR2013FL034)


Multi Objective Particle Swarm Optimization Based on Dynamic Adjustment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了改善多目标粒子群优化算法生成的最终Pareto前端的多样性和收敛性,提出了一种针对多目标粒子群算法进化状态的检测机制.通过对外部Pareto解集的更新情况进行检测,进而评估算法的进化状态,获取反馈信息来动态调整进化策略,使得算法在进化过程中兼顾近似Pareto前端的多样性和收敛性.最后,在ZDT系列测试函数中,将本文算法与其他4种对等算法比较,证明了本文算法生成的最终Pareto前端在多样性和收敛性上均有显著的优势.

    Abstract:

    To improve the diversity and convergence of Pareto front generated by multi objective particle swarm optimization, a detection mechanism for evolutionary state of multi objective particle swarm optimization is presented in this paper. The evolutionary state of the algorithm is assumed by detecting the updating situation of the external Pareto set to get the feedback information to adjust the evolutionary strategy of the algorithm dynamically. It enables the algorithm to take the diversity and convergence of the approximate Pareto front into account in the process of the evolution. Finally, the proposed algorithm shows a good performance compared with other four kinds of equivalence algorithms in the ZDT series test function.

    参考文献
    相似文献
    引证文献
引用本文

李克文,张永哲.基于动态调整的多目标粒子群优化算法.计算机系统应用,2017,26(7):161-166

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-10-20
  • 最后修改日期:2016-11-14
  • 录用日期:
  • 在线发布日期: 2017-10-31
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号