基于用户关联与主题关注的朋友圈兴趣组发现方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61202022)


Discovering Interest Groups among Friend Circle Based on Users' Association and Common Topics
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统社区发现算法大多考虑因素单一,联系密切的友人间关注点可能差异较大,而关注点相同的用户却又可能不在一个朋友圈内.为此,提出了一种混合社区发现算法HCDA,它既考虑社区网络中的节点关注点,又考虑了社区网络拓扑结构,以社区用户间的公共邻居比、关注度及发布微博相似度为依据,度量相邻节点间的社区关联紧密度.并以此为基础,依据相邻节点间的社区增益值,迭代地扩展社区,发现朋友圈中真正的兴趣小组.实验表明,相较于其他方法,本算法能够更准确的发现社区.

    Abstract:

    Most traditional community detection algorithms always consider single factor. Friends who have close relationship may have different concerns and users who have common concerns may not be in a circle of friends. To solve the problems, this thesis presents a hybrid community detection algorithm HCDA, which takes into account the concerns of the community network nodes, but also consider the topological structure of community network. On this basis, it expands iteratively the community by the community gain value between adjacent nodes to find the real interest groups among friend circles. The experimental results illustrate that compared with other methods the proposed algorithm can find the community more accurately.

    参考文献
    相似文献
    引证文献
引用本文

石小丹,王海侠,吴爱华.基于用户关联与主题关注的朋友圈兴趣组发现方法.计算机系统应用,2017,26(6):137-142

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-09-20
  • 最后修改日期:2016-11-07
  • 录用日期:
  • 在线发布日期: 2017-06-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号