基于支持向量机的变压器故障诊断方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Method for Fault Diagnosis of Transformer Based on Support Vector Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高变压器故障诊断的准确率,提出了一种支持向量机(SVM)和改进布谷鸟算法(WCS)及最速下降法相结合的电力变压器故障诊断方法.引入一种新的惯性权重,解决布谷鸟算法在迭代后期收敛速度下降的问题.利用最速下降法与改进的布谷鸟算法相结合的算法进行SVM参数的寻优,克服了基本的SVM模型容易陷入局部最优的缺陷,从而得到具有最佳参数的支持向量机分类模型,利用LIBSVM工具箱在MATLAB软件平台上训练支持向量机,用训练良好的支持向量机诊断110kV甘棠变电所#1主变压器故障情况.通过实例验证分析表明,采用该算法可以准确、有效地对变压器进行故障诊断;相较于粒子群算法(PSO)、遗传算法(GA)、网格搜索算法(GS)等算法,该方法具有更高的诊断准确率.

    Abstract:

    We propose a fault diagnosis method based on the modified cuckoo search algorithm (WCS), steepest descent method and support vector machine (SVM) to improve the accuracy of transformer fault diagnosis. A new inertia weight is also proposed and applied to solve the problem that the convergence rate of cuckoo search algorithm decreases in final iterations. SVM parameters are optimized by the algorithm which is combined with improved cuckoo search algorithm and steepest descent method, overcoming the defects that SVM model is easy to fall into local optimum. Support vector machine is trained on the MATLAB platform using LIBSVM toolbox, and the well-trained SVM will be adopted to diagnose the #1 transformer fault for 110kV Gantang substation. Study of practical cases indicate that, with this method, transformer faults can be diagnosed effectively and accurately, and the accuracy is higher than that using particle swarm optimization(PSO)、genetic algorithm(GA) and grid search(GS).

    参考文献
    相似文献
    引证文献
引用本文

施竹君,王宝华.基于支持向量机的变压器故障诊断方法.计算机系统应用,2017,26(5):163-169

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-08-01
  • 最后修改日期:2016-08-31
  • 录用日期:
  • 在线发布日期: 2017-05-13
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号