数据密集型计算的遥感图像预处理方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

高分重大专项(Y4D00100GF);高分重大专项(Y4D0100038);中科院战略先导专项课题(Y1Y02230XD)


Remote Sensing Image Preprocessing Method Based on the Data Intensive Computing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对大数据时代,数据密集型计算已经成为国内外的一个研究热点. 遥感数据具有多源化、海量化特点,是名副其实的大数据. 研究适用于遥感影像自动化、业务化处理的数据密集型计算方法,是目前遥感应用技术面临的挑战所面临的挑战,本文提出了一种基于数据密集型计算的遥感图像处理方法. 在文中,首先围绕遥感数据自动化、业务化预处理等问题,深入调查和分析了国内外研究现状,进而介绍了系统体系结构,通过工作流灵活组织多种算法模型协同工作,设计以“5并行1加速”的计算体系解决数据密集型的遥感图像预处理,并通过产品生产实例对其性能进行测试. 结果表明,该系统在保证处理精度的前提下,大大提高了遥感大数据预处理的效率.

    Abstract:

    In the era of big data, the research on data-intensive computing is becoming more and more popular both at home and abroad. As a typical branch of big data, remote sensing data is characterized both by the variety of the data sources and the huge data quantity. One of the biggest challenges facing the remote sensing application is how to find out a data-intensive computing method which aims at the automation of the business processions of remote sensing images. In this paper, a new data-intensive computing method for the procession of remote sensing images is proposed. After a deeply study focusing on the automation of the business processions of remote sensing data, a new systematic architecture using workflow is introduced which can coordinate the work among different algorithm models. In addition, in the pre-processing of the remote sensing images, a new computing architecture with five different types of parallelism and a stage of acceleration is also adopted. The computing method proposed in this paper has been tested in many products in real production environment in order to testify its effectiveness. The results show a significant improvement on the efficiency of the pre-processing of remote sensing data in the condition of ensuring the processing precision.

    参考文献
    相似文献
    引证文献
引用本文

周兵,刘晓楠,臧文乾,陈恒.数据密集型计算的遥感图像预处理方法.计算机系统应用,2017,26(4):22-28

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-07-21
  • 最后修改日期:2016-09-02
  • 录用日期:
  • 在线发布日期: 2017-04-11
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号