基于用户部分特征的协同过滤算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Collaborative Filtering Algorithm Based on User Partial Feature
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    协同过滤算法作为推荐系统中应用最广泛的算法之一,在大数据环境下面临严重的数据稀疏问题,使得近邻选择的效果不佳,直接影响了算法的推荐性能.为了解决这一问题,本文提出了一种基于用户部分特征的协同过滤算法(UPCF),该算法首先基于评分偏差和项目流行度进行矩阵缺失值填充,随后利用初始聚类中心优化的K-means算法对该填充矩阵进行项目聚类,并利用用户在项目分类下的局部特征进行近邻集合构建,最终采用基于用户的协同过滤算法获得推荐.我们采用流行的MAE指标对算法在MovieLens数据集上进行评测.实验表明,与目前流行的协同过滤算法相比,提出的UPCF算法在没有增加算法复杂性的前提下,性能有近10%的提升.

    Abstract:

    As one of the most widely used algorithms in recommender system, the traditional collaborative filtering algorithm faces serious data sparseness problem in the big data trend, which leads to the ineffective in nearest neighbor selection, and restricts the performance of the algorithm. To address this problem, this paper proposes a collaborative filtering algorithm based on user partial feature(UPCF). In our method, it first rates the missing values based on rating bias and item popularity; and then clusters the items in the filled matrix with a K-means clustering algorithm of meliorated initial center. At last, it uses the user-based collaborative filtering algorithm with the user feature in item class to get the recommendations. The MAE measures on the MovieLens dataset shows that compared with the current popular algorithms, the performance of our UPCF algorithm improves about 10% without any increase of algorithm complexity.

    参考文献
    相似文献
    引证文献
引用本文

李永超,罗军.基于用户部分特征的协同过滤算法.计算机系统应用,2017,26(3):204-208

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-07-01
  • 最后修改日期:2016-08-31
  • 录用日期:
  • 在线发布日期: 2017-03-11
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号