基于交通领域知识网络的词汇语义相似度计算
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Measuring Semantic Similarity of Words Based on Traffic Field Knowledge Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统基于wordnet的词汇语义相似度计算方法中隔离抽象词汇和具象词汇,以及片面依赖上下义关系的不足,提出了基于交通领域知识网络的词汇语义相似度计算方法.基于上下义、工具-工具对象、部件-整体等概念关系准则构建了交通词汇的知识网络图谱,提出了修正的平均路径长度参量计算网络中词汇的语义相似度,得到更高的语义一致性结果.实验表明,在Finkelstein的353对词汇集上,本文算法能够获得比传统方法更符合人工判断的语义相似度.

    Abstract:

    The traditional way of calculating word semantic similarity is based on wordnet structure, which has a huge gap between physical concept and abstract concept, and only considering concepts' hyponymy. To solve the problem, a novel word similarity calculation algorithm based on traffic field words relation network is proposed in the paper. 10 kinds of concept relationships, including concepts of hyponymy, tool-tool object relationship, standard parts-overall and so on, are used to build traffic words knowledge network. Then modified average path length parameter is used to calculate words' semantic similarity, which accords with people's judgement. The experiment based on Finkelstein's 353 word pairs shows that the algorithm achieves more accurate word semantic similarity.

    参考文献
    相似文献
    引证文献
引用本文

黄浩,陈怀新.基于交通领域知识网络的词汇语义相似度计算.计算机系统应用,2017,26(3):169-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-06-21
  • 最后修改日期:2016-08-08
  • 录用日期:
  • 在线发布日期: 2017-03-11
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号