摘要:一个图像集由大量变化不一的图像组成,而且这些图像都表示同一个人.现实中的图像集数据是非线性的,造成这些现象的因素有人脸的角度不同、光线的明暗等,因此图像集中的每幅图像都是变化的,如果近似的将一个图像集建模为线性子空间,而忽略了集合中数据结构的变化,很显然是不合理的,这也必然会影响到最后的识别率.受流形理论知识的启发,可以将图像集建模为一个流形,这与传统的将图像集建模为子空间的方法有着本质区别.本文在基于流形的人脸图像集识别方法的基础上进行改进,提出新的计算样子空间距离方法,最后采用所有最短子空间距离的平均值作为流形之间的距离,称为改进的多流形方法(Improved multi-manifold method,IMM).IMM方法在CMU PIE数据库上进行实验,结果表明该方法相比其他方法具有更高识别率.