基于改进差分进化算法的多阈值图像分割
作者:
基金项目:

福建省科技厅项目(2013J01186,JK2010056);福建省教育厅项目(JB10160)


Multi-Threshold Image Segmentation Method Based on Improved Differential Evolution Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    阈值法是一种简单有效的图像分割技术.但是阈值法也有着明显的缺点,即阈值求解的计算量随阈值的增加而指数级增长.为克服多阈值图像分割计算量大、运算时间长的缺点,引入改进的差分进化算法,提出新的变异策略,采用自适应的缩放因子和交叉系数,并新增扰动策略.改进的算法将多阈值分割模型视为优化问题,将最大类间方差法作为目标函数,实现多阈值分割.实验结果表明,和其它算法相比,该算法不仅可以取得正确的分割结果,而且分割速度更快.

    Abstract:

    The threshold method is a simple and effective image segmentation technique.However,the threshold method also has obvious disadvantage,the amount of calculation for solving threshold appears to be exponential amplification with the increase of threshold.In order to overcome the shortcomings of large computation load and long computation time for multi-threshold image segmentation,we introduce an improved differential evolution algorithm,which proposes a new mutation strategy,adopts self-adaption scaling factor and cross factor,and newly adds Perturbation strategy.In order to achieve multi-threshold segmentation,the improved algorithm considers multi-threshold segmentation as an optimization problem whose objective function is formulated according to Otsu.Experimental results show that compared with other algorithms,the improved algorithm not only can achieve an accurate image segmentation result,but also has a faster speed.

    参考文献
    1 Otsu N. A Threshold selection method from gray level histogram. IEEE Trans. on System Manand Cybernetics, 1979, 9(1):62-66.
    2 Pun T. A new method for grey-level picture thresholding using the entropy of the histogram. Signal Processing, 1980, 2(3):223-237.
    3 Kapur JN, Sahoop K, Wong AKC. A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics and Image Processing, 1985, 29(3):273-285.
    4 Kittler J, Illingworth J. Minimum error thresholding. Pattern Recognition, 1986, 19(1):41-47.
    5 Tang KZ, Yuan XJ, Sun TK, et al. An improved scheme for minimum cross entropy threshold selection based on genetic algorithm. Knowledge-Based Systems, 2011, 24(8):1131-38.
    6 杨震伦.闵华清.罗荣华.基于改进量子粒子群优化的多阈值图像分割算法.华南理工大学学报(自然科学版),2015,(5).
    7 陈恺,陈芳,戴敏,张志胜,史金飞.基于萤火虫算法的二维熵多阈值快速图像分割.光学精密工程,2014,(2).
    8 陈恺,戴敏,张志胜,陈平,史金飞.基于反向萤火虫算法的多阈值缺陷图像分割.东南大学学报(英文版),2014,(4).
    9 崔丽群,宋晓,李鸿绪,张明杰.基于改进鱼群算法的多阈值图像分割.计算机科学,2014,(8).
    10 尹雨山.王李进.尹义龙.王冰清.赵文婷.徐云龙.回溯搜索优化算法辅助的多阈值图像分割.智能系统学报,2015,(1).
    11 Storn R, Price K.Differential evolutiona simple and efficient heuristic for global optimization over continuous spaces. Joumal of Global Optimization, 1997, 11(4):341-359.
    12 邱晓红,江阳,李渤.分形变异因子修正的差分进化算法.模式识别与人工智能,2015,(2):132-138.
    13 康忠健,訾淑伟.基于差分进化算法的油田区域配电网无功优化技术的研究.电工技术学报,2014,28(6):226-231.
    14 董丽丽,黄贲,介军.云计算中基于差分进化算法的任务调度研究.计算机工程与应用,2014,(5):90-95.
    15 Chen N, Chen WN, Zhang J. Fast detection of human using differential evolution. Signal Processing, 2015, 110(2):155-163
    16 Niu Q, Li K, Irwin GW. Differential evolution combined with clonal selection for dynamic economic dispatch. Journal of Experimental & Theoretical Artificial Intelligence, 2015, 27(3):325-350
    17 Ayala HVH, dos Santos FM, Mariani VC, Coelho LdS. Image thresholding segmentation based on a novel beta differentialevolution approach. Expert Systems with Applications, 2015, (42):2136-2142.
    18 高岳林,刘军民.差分进化算法的参数研究.黑龙江大学自然科学学报,2009,26(1):81-85.
    19 姜立强,郭铮,刘光斌.仪表、自动化与先进集成技术大会, 2007.
    20 Gamperle R, Muller S, Koumoutsakos P. A parameter study for differential evolution. Wseas Int Conf on Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation. Interlaken, Switzerland. 2002. 293-298
    引证文献
引用本文

杨兆龙,刘秉瀚.基于改进差分进化算法的多阈值图像分割.计算机系统应用,2016,25(12):199-203

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-03-30
  • 最后修改日期:2016-06-21
  • 在线发布日期: 2016-12-14
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号