改进视觉词袋模型的快速图像检索方法
作者:
基金项目:

国家自然科学基金(61371040)


Fast Image Retrieval Method Using Improved Bag of Visual Words Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    视觉词袋模型在基于内容的图像检索中已经得到了广泛应用,传统的视觉词袋模型一般采用SIFT描述子进行特征提取.针对SIFT描述子的高复杂度、特征提取时间较长的缺点,本文提出采用更加快速的二进制特征描述子ORB来对图像进行特征提取,建立视觉词典,用向量间的距离来比较图像的相似性,从而实现图像的快速检索.实验结果表明,本文提出的方法在保持较高鲁棒性的同时,明显高了图像检索的效率.

    Abstract:

    Bag of visual words model based on content-based image retrieval has been widely used,traditional bag of visual words model generally uses the SIFT descriptors for feature extraction.In view of the high complexity of SIFT descriptors and the long time of feature extraction,this paper proposes to use a faster binary feature descriptor ORB for the image feature extraction,creating visual dictionary,using the distance between two vectors to compare the image similarity,so as to achieve fast image retrieval.Experimental results show that the method proposed in this paper can improve the efficiency of image retrieval obviously,while maintains a relatively high robustness.

    参考文献
    1 Sivic J. Video Google:A text retrieval approach to object matching in videos. Proc. of the International Conf. on Computer Vision. Nice, France. IEEE Press. 2003.
    2 Lowe D. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004:91-110.
    3 Rublee E, Rabaud V, Konolige K, et al. ORB:An efficient alternative to SIFT or SURF. IEEE International Conference on Computer Vision(ICCV), 2011. IEEE. 2011. 2564-2571.
    4 David L. Naive(Bayes) at forty:The independence assumption in information retrieval. European Conference on Machine Learning, 1998:4-15.
    5 Rosten E, Drummond T. Machine learning for high-speed corner detection. Computer Vision-ECCV 2006. Springer Berlin Heidelberg, 2006. 430-443.
    6 Calonder M, Lepetit V, Strecha C, et al. Brief:Binary robust independent elementary features. Computer Vision-ECCV 2010, 2010:778-792.
    7 Grana C, Borghesani D, Manfredi M, et al. A fast approach for integrating ORB descriptors in the bag of words model. IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, 2013:866709-866709-8.
    8 Mansoori NS, Nejati M, Razzaghi P, et al. Bag of visual words approach for image retrieval using color information. 2013 21st Iranian Conference on Electrical Engineering (ICEE). IEEE. 2013. 1-6.
    9 黄超,刘利强,周卫东.改进的二进制特征图像检索算法.计算机工程与应用,2015,14:23-27.
    10 霍华,赵刚.基于改进视觉词袋模型的图像标注方法.计算机工程,2012,22:276-278,282.
    11 Mansoori NS, Nejati M, Razzaghi P, et al. Bag of visual words approach for image retrieval using color information. 2013 21st Iranian Conference on Electrical Engineering (ICEE). IEEE. 2013. 1-6.
    12 董坤,王倪传.基于视觉词袋模型的人耳识别.计算机系统应用,2014,23(12):176-181.
    13 Zhu L, Jin H, Zheng R, et al. Weighting scheme for image retrieval based on bag-of-visual-words. Image Processing, IET, 2014, 8(9):509-518.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张祯伟,石朝侠.改进视觉词袋模型的快速图像检索方法.计算机系统应用,2016,25(12):126-131

复制
分享
文章指标
  • 点击次数:1540
  • 下载次数: 3708
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-03-14
  • 最后修改日期:2016-04-14
  • 在线发布日期: 2016-12-14
文章二维码
您是第12832596位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号