面向视频压缩的显著性协同检测JND模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61271190,U1405255);福建省教育厅项目(JA15136);福建省高校产学研合作重大项目(2014H61010105);福建师范大学科研创新团队(IRTL1207)


Improved Just Noticeable Distortion Model Based on Saliency Detection for Video Coding
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了更好的将人眼感知特性用于视频压缩系统,提出了一种改进的基于显著性协同检测的恰可察觉失真模型(Just Noticeable Distortion,JND).该模型通过像素域和变换域下联合建模计算得到的最优JND模型,基于上下文感知的显著性算法得到相应的显著图,并将检测结果用于JND模型权值分配.提出的JND残差滤波器可以嵌入到HEVC视频编码框架中.实验结果表明:在全I帧配置下,提出的算法编码结果与HM16相比,在视觉主观感知质量一致的情况下,平均码率可节省10.7%.

    Abstract:

    A improved just noticeable distortion (JND) model based on saliency map detection algorithm is proposed for video coding in order to apply feature of visual perception to the video compression system. The optimal JND model is calculated by setting modle of pixel-based JND with the hybrid. The saliency map concluded by context aware saliency detection modle is used for the weight distribution of JND model. The proposed model and residual filter can be integrated into the framework of HEVC, which is useful for quantifying video data. The experimental results shows that in the case of visual subjective perceptual quality, the average bitrate reduction is 10.71%, compared with HM 16 (all Intra profile).

    参考文献
    相似文献
    引证文献
引用本文

李承欣,叶锋,涂钦,陈家祯,许力.面向视频压缩的显著性协同检测JND模型.计算机系统应用,2016,25(11):208-215

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-03-10
  • 最后修改日期:2016-04-14
  • 录用日期:
  • 在线发布日期: 2016-11-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号