基于Lévy变异的微粒群算法
作者:
基金项目:

国家自然科学基金(61300104);福建省自然科学基金(2013J01230);福建软科学项目(2013R0057)


Particle Swarm Optimization Based on Lévy Mutation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    微粒群算法因其实现简单及优化效果较好而得到广泛应用,但也存在易早熟和局部收敛的缺点;结合Lévy飞行的特性,提出了一种新的带Lévy变异的微粒群算法,并对其收敛性进行分析,指出该算法依概率收敛于全局最优解.通过对8个标准测试函数的仿真实验,结果表明改进算法中的Lévy变异能够利用粒子的当前知识并增加群体的多样性,从而能够更有效地平衡局部搜索和全局搜索,使其具有更好的性能,最后对改进算法的各参数设置进行了探讨分析.

    Abstract:

    Particle swarm optimization (PSO) was applied in many fields because of its simplicity and fast convergence, but it is easily prone to be premature and get struck in local optima. Combination with the characteristics of Lévy flight, this paper proposes a new variation of PSO with Lévy mutation (LévyPSO), and then analyzed it's convergence and pointed out that the algorithm convergence in probability for the global optima. The experiments is conducted on 8 classic benchmark functions, the results show that the Lévy mutation can use the current knowledge of particles and increase the diversity of population. Thus, the proposed algorithm has better performance because of it can more effectively balance the global search and local search. The parameters settings of the proposed algorithm are discussed in the final.

    参考文献
    1 Kennedy J, Eberhart R. Particle swarm optimization. Proc. IEEE International Conference on Neural Networks, 1995. 1995, 4. 1942-1948.
    2 Shi Y, Eberhart R. A modified particle swarm optimizer. the 1998 IEEE International Conference on Evolutionary Computation. Proc. 1998 IEEE World Congress on Computational Intelligence. 1998. 69-73.
    3 Alrashidi MR, El-Hawary ME. A survey of particle swarm optimization applications in electric power systems. IEEE Trans. on Evolutionary Computation, 2009, 13(4): 913-918.
    4 Stimac G, Braut S, Zigulic R. Comparative analysis of PSO algorithms for PID controller tuning. Chinese Journal of Mechanical Engineering, 2014, 27(5): 928-936.
    5 Yusup N, Zain AM, Hashim SZM. Overview of PSO for optimizing process parameters of machining. Procedia Engineering, 2012, 29: 914-923.
    6 Kiranyaz S, Ince T, Gabbouj M. Adaptation, learning, and optimization: Multidimensional particle swarm optimization for machine learning and pattern recognition. Adaptation Learning & Optimization, 2013, 22(10): 1448-1462.
    7 Mahor A, Prasad V, Rangnekar S. Economic dispatch using particle swarm optimization: A review. Renewable and Sustainable Energy Reviews, 2009, 13(8): 2134-2141.
    8 岑翼刚,孙德宝,李宁.WNN 中的改进PSO算法及参数初始化.华中科技大学学报(自然科学版),2006,34(8):43-45.
    9 Qu B, Liang J, Suganthan P. Niching particle swarm optimization with local search for multi-modal optimization. Information Sciences, 2012, 197: 131-143.
    10 Liu Y, Niu B, Luo Y. Hybrid learning particle swarm optimizer with genetic disturbance. Neurocomputing, 2015, 151: 1237-1247.
    11 孙俊,方伟,吴小俊,等.量子行为粒子群优化:原理及其应用. 北京:清华大学出版社,2011.
    12 Ling SH, Iu HH, Chan KY, et al. Hybrid particle swarm optimization with wavelet mutation and its industrial applications. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(3): 743-763.
    13 Wan C, Wang J, Yang G, et al. Gaussian particle swarm optimization with differential evolution mutation. Advances in Swarm Intelligence. 2011. 439-446.
    14 Higashi N, Iba H. Particle swarm optimization with Gaussian mutation. Proc. of the 2003 Swarm Intelligence Symposium, 2003. SIS'03. IEEE. 2003. 72-79.
    15 Krohling RA. Gaussian particle swarm with jumps. The 2005 IEEE Congress on Evolutionary Computation, 2005. 2005, 2. 1226-1231.
    16 Krohling RA, Santos D, Coelho L. PSO-E: Particle swarm with exponential distribution. IEEE Congress on Evolutionary Computation, 2006. 2006. 1428-1433.
    17 Krohling RA, Mendel E. Bare bones particle swarm optimization with Gaussian or Cauchy jumps. IEEE Congress on Evolutionary Computation, 2009. 2009. 3285-3291.
    18 赫然,王永吉,王青,等.一种改进的自适应逃逸微粒群算法及实验分析.软件学报,2005,16(12):2036-2044.
    19 Li C, Liu Y, Zhou A, et al. A fast particle swarm optimization algorithm with cauchy mutation and natural selection strategy. Advances in Computation and Intelligence, 2007: 334-343.
    20 Wang H, Liu Y, Li C, et al. A hybrid particle swarm algorithm with Cauchy mutation. Swarm Intelligence Symposium, 2007. 2007. 356-360.
    21 Wang H, Liu Y, Wu Z, et al. An improved particle swarm optimization with adaptive jumps. IEEE Congress on Evolutionary Computation, 2008. 2008. 392-397.
    22 Jana ND, Sil J. Particle swarm optimization with Lévy flight and adaptive polynomial mutation in gbest particle. Advances in Intelligent Systems and Computing 235: Recent Advances in Intelligent Informatics. Springer, 2014: 275-282.
    23 Reynolds AM. Cooperative random Lévy flight searches and the flight patterns of honeybees. Physics Letters A, 2006, 354(5/6): 384-388.
    24 Mantegna R. Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes. Physics Review E, 1994, 49(5): 4677-4683.
    25 Solis FJ, Wets JB. Minimization by random search techniques. Mathematics of Operations Research, 1981, 6(1): 19-30.
    26 Zhang Y, Gong D, Sun X, et al. Adaptive bare-bones particle swarm optimization algorithm and its convergence analysis. Soft Computing, 2014, 18(7): 1337-1352.
    27 Leu MS, Yeh MF. Grey particle swarm optimization. Applied Soft Computing, 2012, 12(9): 2985-2996.
    28 Shi Y, Eberhart R. Population diversity of particle swarms. IEEE Congress on Evolutionary Computation. 2008. 1063-1067.
    29 李国,徐晨,吴延科.全局收敛的PSO算法的种群多样性特征.计算机应用与软件,2008,25(5):237-240,259.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林振思,张岐山.基于Lévy变异的微粒群算法.计算机系统应用,2016,25(10):225-232

复制
分享
文章指标
  • 点击次数:1423
  • 下载次数: 2677
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-02-17
  • 最后修改日期:2016-04-05
  • 在线发布日期: 2016-10-22
文章二维码
您是第12832596位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号