基于端点检测和高斯滤波器组的MFCC说话人识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省自然科学基金(S2011040004273)


Speaker Identification with Improved MFCC Based on Endpoint Detection and Gaussian Shaped Filters
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在上下文无关的说话人识别应用中,针对传统MFCC特征参数在语音预处理方面不足以及三角滤波器组的缺陷,提出一种改进的MFCC特征参数提取方法.一方面在传统算法上加入端点检测,去除与说话人语音特征无关的静音段;另一方面用高斯滤波器组(Gaussian shaped filters GF)代替三角滤波器组进行频率到Mel频率的转换,提高识别准确率.说话人识别模型使用流行的高斯混合模型(GMM).实验结果显示,高斯滤波器组的引入相比于传统三角滤波器组识别率有4.45%的提升,本文改进后的MFCC特征参数相比于传统方法识别率也提升了6.43%,能更好的代表说话人的语音特征.

    Abstract:

    In the application of text-independent speaker recognition, this paper puts forward an improved feature extraction of MFCC parameters to supply the inefficient traditional MFCC. Endpoint detection is added in traditional algorithm to remove silence parts. Gaussian shaped filters are used to replace triangular filter banks to improve the accuracy of speaker identification. Gauss mixed model is for speaker recognition. Experiments show that Gaussian shaped filters gain 9.63% performance improvement while proposed MFCC can significantly improve recognition rate by 11.07%. The result indicates that the new method is an effective feature extraction algorithm.

    参考文献
    相似文献
    引证文献
引用本文

王萌,王福龙.基于端点检测和高斯滤波器组的MFCC说话人识别.计算机系统应用,2016,25(10):218-224

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-02-17
  • 最后修改日期:2016-04-05
  • 录用日期:
  • 在线发布日期: 2016-10-22
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号