一种量子衍生神经网络模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

东北石油大学研究生创新科研项目(YJSCX2016-030NEPU)


Quantum-Inspired Neural Networks Model and Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高神经网络的逼近能力,通过在普通BP网络中引入量子旋转门,提出了一种新颖的量子衍生神经网络模型. 该模型隐层由量子神经元组成,每个量子神经元携带一组量子旋转门,用于更新隐层的量子权值,输入层和输出层均为普通神经元. 基于误差反传播算法设计了该模型的学习算法. 模式识别和函数逼近的实验结果验证了提出模型及算法的有效性.

    Abstract:

    To enhance the approximation ability of neural networks, by introducing quantum rotation gates to the traditional BP networks, a novel quantum-inspired neural network model is proposed in this paper. In our model, the hidden layer consists of quantum neurons. Each quantum neuron carries a group of quantum rotation gates which are used to update the quantum weights. Both input and output layer are composed of the traditional neurons. By employing the error back propagation algorithm, the learning algorithms are designed. Simulation-based experiments using two application examples of pattern recognition and function approximation, respectively, illustrates the availability of the proposed model.

    参考文献
    相似文献
    引证文献
引用本文

李滨旭,姚姜虹.一种量子衍生神经网络模型.计算机系统应用,2016,25(8):206-210

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-01-29
  • 最后修改日期:2016-02-29
  • 录用日期:
  • 在线发布日期: 2016-08-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号