基于改进QPSO和RBF神经网络的文本分类方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

东北石油大学研究生创新科研项目(YJSCX2016-030NEPU)


Document Classification Based on Improved QPSO and RBF Neural Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高文本分类的准确性,本文提出了一种基于量子PSO和RBF神经网络的新的文本分类方法.首先建立描述样本类别的关键词集合,并采用模糊向量空间模型建立每类样本的特征向量,然后采用RBF神经网络实施文本自动分类,采用改进的量子PSO优化RBF神经网络的参数,以提高其逼近能力.选取中国期刊网的部分文献作为实验数据,实验结果说明本文所提出方法的分类精准度与其他同类方法相比有明显的提高.

    Abstract:

    To enhance the accuracy of the text classification, a new method based on quantum PSO and RBF neural network is proposed. Firstly, it establishes the key words set to describe the classification of the samples, and uses fuzzy vector space model to build the feature vectors of every kind of sample, then automatically classifies the texts by RBF neural network, optimizes the parameters of RBF neural network by improved quantum PSO to enhance its approximation capability. The new method is proved by the classification of some documents in China periodical document database. The experiment shows that this method makes significant improvements in classification accuracy compared to other methods.

    参考文献
    相似文献
    引证文献
引用本文

李滨旭,姚姜虹.基于改进QPSO和RBF神经网络的文本分类方法.计算机系统应用,2016,25(7):264-267

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-01-07
  • 最后修改日期:2016-02-26
  • 录用日期:
  • 在线发布日期: 2016-07-21
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号