融合用户信任模型的协同过滤推荐算法
作者:

Collaborative Filtering Recommendation Based on User Trust Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    协同过滤推荐是电子商务系统中最为重要的技术之一.随着电子商务系统中用户数目和商品数目的增加,用户-项目评分数据稀疏性问题日益显著.传统的相似度度量方法是基于用户共同评分项目计算的,而过于稀疏的评分使得不能准确预测用户偏好,导致推荐质量急剧下降.针对上述问题,本文考虑用户评分相似性和用户之间信任关系对推荐结果的影响,利用层次分析法实现用户信任模型的构建,提出一种融合用户信任模型的协同过滤推荐算法.实验结果表明: 该算法能够有效反映用户认知变化,缓解评分数据稀疏性对协同过滤推荐算法的影响,提高推荐结果的准确度.

    Abstract:

    Collaborative filtering is one of the most important technologies in E-commerce. With the development of E-commerce, the magnitudes of users and commodities grow rapidly, the problem of data sparsity of user project is becoming more and more significant. In traditional collaborative filtering recommender systems, similarity of users is often calculated based on common ratings. When user-item ratings are sparse, the accuracy of recommendations will be influenced because users with similar preferences can't be found accurately. Considering the effect of users' ratings and trusts on the recommendation results, this paper applies AHP to construct user trust model and proposes a collaborative filtering recommendation method combining user trust model. The experimental results show that, user similarity calculation method combining user trust can effectively reflect the user's cognitive changes, ease the impact of data sparsity on the collaborative filtering recommendation algorithm and improve the accuracy of recommendation results.

    参考文献
    1 Li M, Bonti A. T-OSN: A trust evaluation model in online social networks. 2011 IFIP 9th International Conference on Embedded and Ubiquitous Computing (EUC). IEEE. 2011. 469-473.
    2 王国霞,刘贺平.个性化推荐系统综述.计算机工程与应用,2012,48(7):66-76.
    3 Wang LC, Meng XW, Zhang YJ. A heuristic approach to social network-based and context-aware mobile services recommendation. Journal of Convergence Information Technology, 2011, 6(10): 339-346.
    4 Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms. Proc. of the 10th International World Wide Web Conference. 2001. 285-298.
    5 Candillier L, Meyer F, Fessant F. Designing specific weighted similarity measures to improve collaborative filtering systems. Advances in Data Mining. Medical Applications, E-Commerce, Marketing, and Theoretical Aspects. Springer Berlin Heidelberg, 2008: 242-255.
    6 Sarwar B, Karypis G, Konstan J, et al. Application of dimensionality reduction in recommender system-a case study. Minnesota Univ Minneapolis Dept of Computer Science, 2000.
    7 Pazzani M J. A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 1999, 13(5-6): 393-408.
    8 胡勋,孟祥武,张玉洁等.一种融合项目特征和移动用户信任关系的推荐算法.软件学报,2014,25(8):1817-1830.
    9 蔡浩,贾宇波,黄成伟.结合用户信任模型的协同过滤推荐方法研究.计算机工程与应用,2010,46(35):148-151.
    10 乔秀全,杨春,李晓峰等.社交网络服务中一种基于用户上下文的信任度计算方法.计算机学报,2011,34(12):2403- 2413.
    11 杨艳屏.基于层次化分析的全网业务健康度评价.计算机系统应用,2013,22(5):9-13.
    12 Mao J, Cui Z, Zhao P, et al. An improved similarity measure method in collaborative filtering recommendation algorithm. 2013 International Conference on Cloud Computing and Big Data (CloudCom-Asia). IEEE. 2013. 297-303.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨秀梅,孙咏,王丹妮,李岩.融合用户信任模型的协同过滤推荐算法.计算机系统应用,2016,25(7):165-170

复制
分享
文章指标
  • 点击次数:1424
  • 下载次数: 2791
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-11-20
  • 最后修改日期:2015-12-15
  • 在线发布日期: 2016-07-21
文章二维码
您是第12871949位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号