摘要:网络入侵检测一直是网络安全领域中的研究热点,针对分类器参数优化难题,为了提高网络入侵检测准确性,提出一种改进粒子群算法和支持向量机相融合的网络入侵检测模型(IPSO-SVM).首先将网络入侵检测率作为目标函数,支持向量机参数作为约束条件建立数学模型,然后采用改进粒子群算法找到支持向量机参数,最后采用支持向量机作为分类器建立入侵检测模型,并在Matlab 2012平台上采用KDD 999数据进行验证性实验.结果表明,IPSO-SVM解决了分类器参数优化难题,获得更优的网络入侵分类器,提高网络入侵检测率,虚警率和漏报率大幅度下降.