融合邻域模型与矩阵分解模型的推荐算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河南省重点科技攻关项目(142102210225)


Recommender Algorithm Incorporating Neighborhood Model with Matrix Factorization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    协同过滤推荐算法是目前构建推荐系统最为成功的算法之一,它利用已知的一组用户对物品喜好数据来对推测用户对其他物品的喜好,其中,能够直接刻画用户与项目潜在特征的矩阵分解模型和通过分析物品或者项目间相似度的邻域模型是研究的热点.针对这两个模型存在的不足,提出了一种将邻域模型与矩阵分解模型有效结合的方法,进而构建了一个改进的协同过滤推荐算法,提高了预测准确性.实验结果验证了改进算法的正确性与有效性.

    Abstract:

    Collaborative Filtering(CF) is one of the most successful approaches for building recommender system,it uses the known preferences of a group of users to make predictions of unknown preferences of other users. The matrix factorization models which can profile both users and items latent factors directly,and the neighborhood models which can analyze similarities between users and items are current research focuses.A method of merging both matrix factorization models and neighborhood models is proposed, which can make further accuracy improvements. The experiment results show that this method is correct and feasible.

    参考文献
    相似文献
    引证文献
引用本文

张航,叶东毅.融合邻域模型与矩阵分解模型的推荐算法.计算机系统应用,2016,25(6):154-159

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-10-10
  • 最后修改日期:2015-12-02
  • 录用日期:
  • 在线发布日期: 2016-06-14
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号