基于受约束偏置的概率矩阵分解算法
作者:
基金项目:

河南省重点科技攻关项目(142102210225)


Probabilistic Matrix Factorization Based on Constrained Bias
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在概率矩阵分解(PMF)模型拟合之后,评分较少用户的特征趋近于先验分布的平均值,导致对其评分预测接近物品的平均评分.受约束概率矩阵分解(CPMF)未考虑到不同评分系统的整体差异以及数据集内部用户与物品存在的固有属性.针对以上问题,提出将传统矩阵分解中的用户和物品偏置项以及全局平均分结合受约束概率矩阵分解来建立新的矩阵分解算法.算法利用整体平均分衡量不同评分系统,在采用偏置来表示用户以及物品之间相互独立的属性的同时,引入约束使行为相近用户拥有相近的用户偏置,从而提高预测精度.在两个真实数据集上的实验结果表明,该算法相对于PMF和CPMF算法预测精度得到了提高.

    Abstract:

    Users who rate few will have features that are close to the prior mean once the probabilistic matrix factorization(PMF) model has been fitted, which leads to the predictions close to the movie average ratings. Constrained probabilistic matrix factorization(CPMF) algorithm has not fully considered about the holistic diversity among different rating systems and the inherent attributes that different users and products hold within the datasets. To solve the problems above, the user and product bias and global average are combined with constrained probabilistic matrix factorization to build a new matrix factorization algorithm. The algorithm brings in the constrains to restrain the user bias among users of similar action while evaluating different rating systems with global average and representing the attributes of different users and products with biases to increase the prediction accuracy. The results of experiments on two real datasets indicate that the prediction accuracy of the algorithm has been improved compared to PMF and CPMF.

    参考文献
    1 Mnih A, Salakhutdinov R. Probabilistic matrix factorization. Advances in Neural Information Processing Systems, 2007.
    2 孙光福,吴乐,刘淇,朱琛,陈恩红.基于时序行为的协同过滤推荐算法.软件学报,2013,24(11):2721-2733.
    3 印桂生,张亚楠,董宇欣,等. 基于受限信任关系和概率分解矩阵的推荐.电子学报,2014,(5):904-911.
    4 Wu L, Chen E, Liu Q, et al. Leveraging tagging for neighborhood-aware probabilistic matrix factorization. Proc. of the 21st ACM International Conference on Information and Knowledge Management. ACM. 2012. 1257-1264.
    5 Koren Y. The BellKor solution to the Netflix grand prize. Netflix Prize Documentation, 2009.
    6 Salakhutdinov R, Mnih A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. Proc. of the Twenty Fifth International Conference Machine Learning. Helsinki Finland. June 5-9, 2008. 880-887.
    7 Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer, 2009, 42(8): 30-37.
    8 Ma H, Yang H, Lyu M. SoRec: Social recommendation using probabilistic matrix factorization. Proc. of the 17th Acm Conference on Information and Knowledge Management. California Usa. October 26-30, 2008. 931-940.
    9 Shan H, Banerjee A. Generalized probabilistic matrix factorizations for collaborative filtering. 2010 IEEE 10th International Conference on Data Mining (ICDM). IEEE. 2010. 1025-1030.
    10 Hernandezlobato J, Houlsby N, Ghahramani Z. Probabilistic Matrix factorization with non-random missing data. Proc. of the 31st International Conference on Machine Learning. 2014.
    11 Lawrence N D, Urtasun R. Non-linear matrix factorization with Gaussian processes. International Conference on Machine Learning. 2009.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

梅忠,肖如良,张桂刚.基于受约束偏置的概率矩阵分解算法.计算机系统应用,2016,25(5):113-117

复制
分享
文章指标
  • 点击次数:2216
  • 下载次数: 2754
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-08-26
  • 最后修改日期:2015-10-26
  • 在线发布日期: 2016-05-20
文章二维码
您是第12855279位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号