Hadoop框架下节点重要性算法实现蛋白质功能预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

福建省自然科学基金(2014J01220);三明学院科研基金(B201201/G);福建省教育厅科技基金(JB13187,JA15463)


Predicting Protein Function Method with Node Importance Algorithm Based on Hadoop
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    论文从蛋白质序列数据的角度出发,通过序列相似度循环匹配构造蛋白质网络,并且通过网络节点重要性排序算法预测蛋白质功能.以节点重要性重要性作为研究对象,在蛋白质网络应用节点重要性算法PageRank计算网络中蛋白质节点PR值,在Hadoop平台上进行开发实现功能预测的并行计算,减小运行时间.最后通过准确率,召回率以及F1-measure三个指标来衡量结果,并对比传统的功能预测方法,验证结果的有效性.

    Abstract:

    This paper starts from the perspective of protein sequence data, and constructs the protein network by cyclic sequence similarity matching. Then a novel method based on ranking the importance of network nodes is proposed. Considering the importance of protein nodes in the network, the node importance algorithm PageRank (PR) is used to compute the nodes' PR value. The proposed method is also developed on the Hadoop Platform, which makes it more suitable for huge genome database with great efficiency and parallel computing. Finally, comparing the traditional method of function prediction by the Accurate rate, Recall rate and F1-measure measurements, our method has been validated and the result shows that the method is feasible and valuable for practical usage.

    参考文献
    相似文献
    引证文献
引用本文

林志兴,郭金文,林劼. Hadoop框架下节点重要性算法实现蛋白质功能预测.计算机系统应用,2016,25(5):77-82

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-08-25
  • 最后修改日期:2015-10-26
  • 录用日期:
  • 在线发布日期: 2016-05-20
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号