局部模糊检测优化算法
作者:
基金项目:

国家自然科学基金(61473330);福建省自然科学基金(2013J01186);福建省科技厅项目(JK2010056);福建省教育厅项目(JB10160)


Local Blur Detection Optimization Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [9]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目前基于特征的局部模糊检测算法为了优化特征响应需要在多尺度下重复计算局部模糊特征,且邻接关系复杂,导致计算量大,时间效率低.针对上述时间问题,本文提出一种利用单层垂直上下文的局部模糊检测优化算法.首先提取图像块重尾分布、峰度、功率谱、线性滤波等模糊特征,然后使用贝叶斯法学习模型,计算后验概率作为初步估计模糊响应,最后本文提出将邻近像素点的模糊响应信息作为上下文更新像素点自身响应信息,增加上下文支撑域的尺寸以更充分的考虑周围信息,使用一个相互垂直的一维上下文以减小计算量,从而构造新的能量函数进行全局优化,通过最小化能量函数得到最终的模糊响应.实验表明,本文算法能有效检测图像的局部模糊,并提高检测的时间效率.

    Abstract:

    The existing blur detection algorithm based on features has to calculate local features many times in order to optimize the blur response. Complicated adjacency relationship leads to large computing tasks and low efficiency. To solve the time problem, this paper proposes a local blur detection optimization algorithm with the perpendicular context in single scale. Firstly, we calculate features such as local heavy-tailedness feature, kurtosis feature, local power spectrum feature and local filters, Then naive Bayesian classifier is used to combine these features. Finally, this paper takes the blur response information of adjacent pixels as context to update the pixel itself, increases support region of context to take the information around the pixel into account more adequately, uses one-dimensional perpendicular context to reduce the amount of calculation, forms new energy function, and obtains the final blur response by minimizing the energy function. Experimental results show that the modified algorithm can detect local blur effectively and improve time efficiency.

    参考文献
    1 Levin A.Blind motion deblurring using image statistics.In:Schölkopf B, Platt J C, Hoffman T, eds.Advances in Neural Information Processing Systems 19.Cambridge, MA.MIT Press.2007.841-848.
    2 Liu RT, Li ZR, Jia JY.Image partial blur detection and classification.IEEE Conference on Computer Vision and Pattern Recognition.Anchorage, AK.IEEE Press.2008.1-8.
    3 Tai YW, Brown MS.Single image defocus map estimation using local contrast prior.IEEE International Conference on Image Processing.Cairo.IEEE Press.2009.1797-1800.
    4 Chakrabarti A, Zickler T, Freeman WT.Analyzing spatially-varying blur.IEEE Conference on Computer Vision and Pattern Recognition.San Francisco, CA.IEEE Press.2010.2512-2519.
    5 Grimaldi D, Kurylyak Y, Larnonaca F.Detection and parameters estimation of locally motion blurred objects.IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems.Prague.IEEE Press.2011, 1.483-487.
    6 Su B, Lu S, Tan CL.Blurred image region detection and classification.ACM International Conference on Multimedia.New York.ACM New York, 2011.1397-1400.
    7 Shi JP, Xu L, Jia JY.Discriminative blur detection features.IEEE Conference on Computer Vision and Pattern Recognition.Columbus, OH.IEEE Press.2014.2965-2972.
    8 Yedidia JS, Freeman WT, Weiss Y.Understanding belief propagation and its generalizations.In:Lakemeyer G, Nebel B, eds.Exploring Artificial Intelligence in the New Millennium.San Francisco, CA.Morgan Kaufmann Publishers Inc.2003.239-269.
    9 董伟生.基于上下文的自适应图像建模及其在图像恢复中的应用[博士学位论文].西安:西安电子科技大学,2011.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑文洁,刘秉瀚.局部模糊检测优化算法.计算机系统应用,2016,25(4):210-214

复制
分享
文章指标
  • 点击次数:1764
  • 下载次数: 3009
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-08-14
  • 最后修改日期:2015-09-24
  • 在线发布日期: 2016-04-19
文章二维码
您是第12860139位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号