基于PSO-SVM的电机故障检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河南省重点科技攻关项目(142102210225)


Mine Based Motor Fault Detection Model Based on PSO-SVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统智能故障检测模型中算法初始参数复杂,选取难度较大,缺乏自学习、自组织能力、泛化能力弱,极易陷入局部极小值、算法单一等缺点.组合应用智能检测算法可整合不同算法优势,避免单一算法缺点,为此,文中提出支持向量机算法与改进粒子群算法相结合的电机故障检测模型:以电机故障特征频率特征数据为基础,首先使用改进全局求解性能的粒子群算法求解影响支持向量机分类检测性能的最佳参数,然后把最佳参数应用于的擅长模式识别的支持向量机算法,进行样本数据的训练,构建故障检测模型;最后,使用故障检测模型对电机的状态进行预测.实验结果表明,采用该方法进行故障检测的准确率,比传统的神经网络方法提高17%,比纯支持向量机算法提高3.33%.

    Abstract:

    Traditional intelligent fault detection model such as neural network has some faults such as lacking of self-learning and self-organization, weak generalization ability, easy to fall into local minimum value and single. Intelligent detection algorithm of combination application can integrate advantages of different algorithms and avoid the disadvantages of single algorithm. Therefore, this paper proposes a mine based motor fault detection model based on combination of vector machine(SVM) algorithm and improved particle swarm optimization(PSO) algorithm. Firstly, the optimal parameters for SVM is got by using improved particle swarm optimization(PSO) algorithm, which has better inspiration performance and relapses into local optimal solution less. Secondly, the optimal parameters are used by SVM algorithm to train sample data for data classification, because SVM algorithm is good at pattern recognition. At last, a fault diagnosis model has built up. The experimental results show that the method can improve the accuracy of fault detection by 3.33%-17%.

    参考文献
    相似文献
    引证文献
引用本文

李圣普,王小辉.基于PSO-SVM的电机故障检测.计算机系统应用,2016,25(3):136-141

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-05-07
  • 最后修改日期:2015-06-03
  • 录用日期:
  • 在线发布日期: 2016-03-17
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号