基于机器视觉的随机纹理瓷砖的分选系统
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省教育部产学研结合项目(2012B091100109)


Classification System of Random Texture Ceramic Tiles Based on Machine Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对日益加快的瓷砖生产速度与缓慢的人工分选速度之间不协调导致的瓷砖出产效率低下的问题,提出了以机器视觉软件HALCON 11.0为软件开发平台的结合瓷砖颜色、纹理特征提取的算法,以及针对多分类问题的改进多层感知器神经网络算法(MLPNN).首先对拍摄到的瓷砖图像进行去噪预处理,在HSI颜色空间中提取瓷砖的色调(Hue)特征并计算反映瓷砖的纹理特征的灰度共生矩阵(GLCM)和灰度幅值分布特征,再将得到的特征作为多层感知器的神经网络输入层神经元,然后设计以softmax为激活函数的多层感知器神经网络来进行模式匹配,并与BP神经网络模式匹配方法进行对比,最终搭建出具有简单人机交互界面的随机纹理瓷砖的分选实验样机.实验结果表明:本系统对实验的各类随机纹理瓷砖的分选准确率都在90%以上,具有较高的分选准确率,能应用于瓷砖生产实践.

    Abstract:

    Aiming at the problem of poor efficiency of ceramic tile production caused by the mismatch between higher and higher speed of production and slow speed of artificial classification, the paper presented an algorithm about extracting the features of color and texture of ceramic tiles and an algorithm about improved multilayer perceptron neural network(MLPNN) aiming at the problem of multi-classification based on machine vision software, HALCON 11.0, as the development platform. Firstly, the images of ceramic tiles were denoised as pretreatment. Then the system extracted the hue features of ceramic tiles in HSI color space, calculated the gray level co-occurrence matrix(GLCM) and gray level characteristics of amplitude distribution to reflect the texture feature of ceramic tiles, and put the features as input layer neurons of multilayer perceptron neural network. Next, the paper designed the multilayer perceptron neural network with putting softmax function as the activation for pattern matching, and compared with the pattern matching method of BP neural network. Finally, an experimental prototype of classification system was built with simple user interface. The experimental results show that, the classification accuracy for all kinds of ceramic tiles in the experiments are over 90%. The system has high classification accuracy for the random texture ceramic tiles and can be applied to production of ceramic tiles.

    参考文献
    相似文献
    引证文献
引用本文

焦亮,胡国清,Jahangir Alam SM.基于机器视觉的随机纹理瓷砖的分选系统.计算机系统应用,2016,25(3):93-100

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-07-06
  • 最后修改日期:2015-09-06
  • 录用日期:
  • 在线发布日期: 2016-03-17
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号