iLOF*:一种改进的局部异常检测算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


iLOF*:An Optimized Local Outlier Detection Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    异常检测是数据挖掘领域研究的基本问题之一,已被广泛应用于气象预报、网络入侵检测、电信和信用卡欺诈侦察等领域.基于密度的异常检测算法LOF具有较好的检测效果和适用性,但其计算量较大,运行效率不够高,且在进行对象之间的距离计算时忽略了不同属性对异常值的不同影响.针对以上不足,本文提出了一种高效的LOF改进算法iLOF*.该算法利用网格进行数据约简,从而提高了算法的运行效率;同时,在进行对象之间的距离计算时,引入信息熵,给不同属性赋予不同的权值,从而提高了算法的准确率.另外,用MapReduce计算框架将iLOF*算法并行化,进一步提高了算法在大规模数据集上的运行效率.最后的实验结果验证了iLOF*算法的有效性和高效性.

    Abstract:

    Outlier detection is an important branch in the areaof data mining,It has been widely used in weather forecasting, network intrusion detection, telecommunications and credit card fraud detection,etc. LOF algorithm has good detection effect and availability, but its computation is very high, whose efficiency is not good enough,And when calculating the distance between two objects, LOF algorithm ignores the different influence of different properties.To solve above disadvantages, we put forward an improved outlier detection algorithmiLOF*. iLOF* algorithm usesgrid to reduce the data sets, so as to improve the efficiency of the algorithm; at the same time, when calculating the distance between the object, iLOF* algorithm gives different weights to different properties through the introduction of information entropy, which improve the accuracy of the algorithm.In addition, we use the parallel computing framework MapReduce to parallel iLOF * algorithm, which further improves the efficiency of algorithm on large data sets.The experimental results demonstrate the effectiveness and efficiency of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

王飞. iLOF*:一种改进的局部异常检测算法.计算机系统应用,2015,24(12):233-238

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-04-28
  • 最后修改日期:2015-06-08
  • 录用日期:
  • 在线发布日期: 2015-12-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号