面向城轨线网的海量数据查询优化方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Methods of Massive Data Query Optimization for Urban Rail Transit Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    城轨线网数据中心汇集多条线路数据,单表记录量达数十亿条,当前系统数据查询响应时间过长、效率低下.提出利用数据库集群及中间件优化系统架构突破单库存储与处理瓶颈,多节点并行处理提升查询速度.按线路水平切分数据等方法,保证JOIN操作的局部性,满足新线路扩展需求;利用表分区、索引、物化视图、SQL语句优化等技术优化单机查询.其中,针对集群数据透明访问系统架构,设计专用数据库访问中间件,解决查询解析、路由及结果合成等关键问题.以广州城轨线路数据为例进行实验,结果表明通过本文方法各类查询响应时间至少降低90%.

    Abstract:

    The center of urban rail network needs to collect the data of all the urban rail lines and the size of table records will reach billions. The data query on urban rail network will need too much time and the system efficient is very low. We propose the program to optimize the system architecture by database cluster and middleware, which improves query efficiency because of more powerful storage and parallel processing capacity than that of a single database. An sharding method that divide the data horizontally by lines to avoid the expensive table joins crossing databases and the new rail line can be easily extended just by adding more database nodes. Serveral technologies, such as table partitioning, index, materialized view and SQL etc. are used also to optimize the reaction time when standalone inquiring. A special light-weight database access middleware used in the system architecture is designed to solved some key problems such as SQL parsing, route inquiring and result data merging etc.. The experiments are carrieded out on data from Guangzhou Metro as verifying the scheme of this paper. The results show that the reaction time of all types of queries is reduced 90% at least.

    参考文献
    相似文献
    引证文献
引用本文

赵驰,刘建委,饶里强,刘琼.面向城轨线网的海量数据查询优化方法.计算机系统应用,2015,24(12):157-162

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-03-27
  • 最后修改日期:2015-06-03
  • 录用日期:
  • 在线发布日期: 2015-12-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号